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INTRODUCTION 

The Necessity of Lanthanide-Actînidé Separations 

in Nuclear Fuel Reprocessing 

In recent years the problems surrounding the treatment of nuclear-

f ission wastes have been viewed with increasing interest by both the 

scienti f ic community and the general publ ic. This dissertat ion concerns 

the development and evaluation of several l igands of possible use in 

separation processes germane to that cause. In a larger sense, the 

stabi l i ty constants and ion-exchange phenomena reported herein provide 

insights into the nature of bonding in tervalent lanthanide and actinide 

complexes, and into the origin of dif ferences in the coordination chemistry 

of these two series. 

One of the most formidable problems posed by spent fuel reprocessing 

concerns the part i t ioning of tr i  valent act inides, americium and curium, 

from the tr i  valent lanthanide f ission products. I t  is felt  by many that 

secondary processing in this fashion would signif icantly decrease the long-

term hazards associated with the geological storage of f ission wastes. 

The dif f icult ies associated with this separation and the possible applica

t ion of the present work to this problem are, however, more clearly 

developed after a short discussion of the present reprocessing scheme. 

Figure 1 ( I)  i l lustrates the basis of the current approach to re

processing. After removal from the reactor, the spent fuel elements are 

held in storage for a period of t ime to al low the short- l ived f ission 

products to decay. The fuel elements are then opened mechanical ly and the 

fuel cores are dissolved in a strong nitr ic acid solut ion, leaving behind 
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the undissolved metal cladding. At this point, the majori ty of uranium 

and plutonium is recovered from the acid stream by ut i l izat ion of the 

PUREX process. In this process, uranium and tetravalent plutonium are 

selectively extracted from the f ission-product mixture by tr ibutyl 

phosphate (TBP). The separation of uranium and plutonium is subsequently 

accomplished by the addit ion of an appropriate reductant, capable of 

reducing Pu(IV) to Pu(l l l )  which is much less soluble in TBP. This permits 

the convenient recovery of uranium from the organic phase and plutonium 

from an aqueous phase. Since both the uranium and plutonium recovered in 

this manner represent potential reactor fuels, the waste generated by the 

PUREX process is largely confined to the raff inate result ing from the 

ini t ial  TBP solvent extraction step. I t  is the disposal of the consti t

uents of this high-level l iquid waste stream (HLLW) which is of greatest 

concern in the treatment of nuclear power plant waste. 

The exact composit ion of the HLLW depends on several factors 

( irradiat ion t ime, fuel configuration, amount of recycled material,  etc.),  

but much can be inferred by considering the projected HLLW analysis for 

the Barnwell  reprocessing faci l i ty. Table 1 (2) depicts the mass fract ion, 

production rate, and concentrat ion of elements expected to occur in the 

PUREX raff inate after a three-year cool ing period. The waste stream is 

composed of several dist inct classes of elements, di f fering in origin. 

Large amounts of iron, and lesser amounts of chromium and nickel, result 

from corrosion of irradiated reactor components. Secondly, a wide variety 

of elements is derived directly from the f ission of uranium. The f ission-

produced lanthanides (as well  as some natural Gd which is added during 

reprocessing as a neutron poison), a host of transit ion metals, and Sr, 
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Table 1. Barnwell  HLLW composit ion after 3-year cool ing period 

Element g/tonne Kg/day Concentrat ion 
in waste, M 

H 2,600 13.0 4.58 

Na 5,000 25.0 0.383 

Fe 20,000 100.0 O . 63I  

Or 200 1.0 0.0067 

Ni 80 0.4 0.0025 

Se 14.4 0.072 0.0003 

Br 13.7 0.069 0.0003 

Rb 347 1.74 0.0071 

Sr 828 4.14 0 .0163  

Y 416 2.08 0.0082 

Zr 3.710 18.55 0 .0701  

Mo 3,560 17 .80  0.0643 

Tc 822 4.11 0.0146 

Ru 2,330 11.65 0.0402 

Rh 505 2.53 0.0086 

Pd 1,520 7.60 0.0254 

Ag 82 0.41 0.0013 

Cd 136 0.68 0.0021 

In 1.6 0.008 

Sn 25.7 0.13 0.0004 

Sb 10.8 0.054 0.0002 

Te 535 2.68 0.0073 
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Table 1. Continued 

Element g/tonne Kg/day Concentrat ion 
in waste, M 

Cs 2,600 13.00 0.0340 

Ba 1,750 8.75 0.0224 

La 1,320 6 .60  0.0167 

Ce 2,540 12.70 0 .0317  

Pr 1,280 6.40 0.0160 

Nd 4,180 20 .90  0.0507 

Pm 35.6 0.18 0.0004 

Sm 1,010 5.05 0.0119 

Eu 174 0.87 0.0020 

Gd 9,122 45.61 0.1021 

Tb 1 .3  0.006 

Hg 10 0.050 0.0001 

Np 482 2.41 0.0036 

U 10,000 50 .00  0.0740 

Pu 100 0 .50  0.0007 

Am 525 2 .63  0.0038 

Cm 25 . 0 .125  0.0002 

NO"^ 288,945 1,444.75 8.21 

PO "3 2,000 10.0 0.0372 

TOTAL 368,837 1,844.23 
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Cs, and Ba, are al l  major contr ibutors to the mass of the HLLW. A f inal 

group of great import consists of the actinides not removed in the PUREX 

process. A considerable amount of unextracted uranium, along with lesser 

amounts of the neutron-capture products, Np, Pu, Am, and Cm, is found in 

the HLLW stream. 

The preceding groups are seen to represent a wide variety of chemical 

famil ies and origins. I t  is not surprising, then, that much diversity 

is also present in their radiolyt ic toxicit ies. Most f ission products 

3 
require safe containment for about 10 years, a t ime scale well  within the 

credibi l i ty of many geological storage sites (3). The necessary contain

ment period is extended to 10^ years, however, by the presence of the 

long-l ived, alpha-emitt ing actinide group (4, 5, 6). This disparity in 

the required containment period of the f ission wastes has prompted a cal l  

for the separation, and separate disposal of the residual act inide 

elements by more str ingent means ( i .e.,  transmutation or special geological 

containment). Inherent in any such actinide isolat ion plan is the need 

to separate amer icium and curium from the chemical ly similar lanthanide 

elements which compose a third of the mass of the HLLW. The next section 

of this work wi l l  explore the factors underlying the dif f iculty of this 

separation, and wi l l  review the solut ions suggested to date. 

The Chemical Basis for Lanthanide-Actinide Separations 

Large-scale separation processes for metal ions rely almost 

exclusively on dif ferences in complex-forming abi l i ty to provide the 

driving force for separation. In l ight of this cri terion and the known 

chemistry of these elements, i t  is quite extraordinary that any scheme 
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for separating the tr i  valent lanthanides, and amer ic i  urn and curium 

exists. The ions in question are al l  considered "hard acids" in the 

Pearson sense and thus their chemistry is dominated by electrostat ic 

bonding. I t  fol lows that, since the charge on the cations to be separated 

is equal (+3), the radius of the ion is the paramount factor in 

determining the strength of the complex formed with a l igand. With this 

in mind, the prime cause for the dif f iculty of the lanthanide-actini de 

separation becomes apparent in the crystal lographic radi i  shown in 

Figure 2 (7). Due to radius contractions in both the lanthanide (Ln) 

and actinide (An) series, americium and curium are interspersed within 

the lanthanide sequence, having radi i  approximate to neodymium and 

promethium. The gist of this discussion is then that, i f  these primary 

chemical factors are the only forces operating, one would expect ions of 

equal radius to form complexes of equal strength, and thus no separation 

of the l ighter lanthanides from americium and curium would be possible. 

Fortunately, secondary forces do exist which endow some t r i  valent 

act inide complexes with greater stabi l i ty than those complexes formed by 

the lanthanide ions of the same radius (8). The origin of this addit ional 

stabi l i ty is not well  understood, and at least two dif ferent effects may 

be operating. Currently the consensus is that covalent interactions with 

the more avai lable actinide 5f orbitals are responsible for the increase 

in stabi l i ty. indeed, there exists some evidence that this type of inter

action is possible. Electron paramagnetic resonance experiments with UF^ 

and NdFg in a CaF^ latt ice (9) have displayed complex hyperf ine structure, 

due to f luorine nuclei,  in the spectrum of the actinide cation. No such 

effect is observed for the lanthanide counterpart,  implying that the 
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lanthanide 4f orbltals do not exhibit  the same abi l i ty to interact with 

l igand atoms as the analogous actinide 5f orbitals. A second indication 

of tr i  va lent actinide covalence has appeared in the abi l i ty of 

relat ively soft l igands containing nitrogen donors to extract the 

actinides on a tracer scale (10). Discussion of these l igands wi l l  be 

deferred unti l  the next section. 

While increased covalency is a plausible explanation for the excess 

stabi l i ty in actinide complexes, there are certain experimental results 

which temper enthusiasm for this view. Tris(cyclopentadienide)Am(I!I) 

is a well-characterized compound which might be expected to exhibit  

considerable covalent nature. In opposit ion to the expected result,  Nugent 

et al .  ( i l )  has estimated that, on the basis of the absorption spectrum, 

the covalent interactions in Am(CpH_)_ account for less than 3% of the 
p p 3 

bonding in this complex. This lack of covalent character in tr i  valent 

act inide organometal1ic compounds has been reiterated in a recent review 

by Baker et al.  (12) in which i t  is stated: "Although there is evidence 

for some appreciable f-orbital contr ibution to the bonding in the early 

actinide(IV) complexes, there is essential ly none in actinide(I 11) or 

lanthanide(l l l )  complexes." One must conclude that the extent to which 

signif icant 5f part icipation occurs in other t r i  valent act inide complexes 

is a matter of some doubt. 

A closer look at the relat ionship between the lanthanide complexes 

and those of another t r i  valent cation, yttr ium, would seem to indicate 

an alternative explanation to the origin of discrepancies in complex 

strength. Y(l l l ) ,  with a radius equivalent to Ho(l l l ) ,  would be 

expected to form complexes of comparable strength. This is not the case. 
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In the vast majori ty of instances, the formation constants of the 

yttr ium complexes are substantial ly smaller than those of the analogous 

holmium complex. Since there is no evidence for covalent interactions 

for either ion in question, this phenomena is almost certainly due to the 

greater effect ive nuclear charge associated with the holmium 

cation. One might then also speculate that the observed dif ferences in 

the Am(l l l )  and Nd(lI  I)  complex stabi l i t ies might be a result of 

dissimilari t ies in the values of Z ,^ for these cations. Durrant and 
eft  

Durrant have calculated the values of Z^^^ for the lanthanide cations ( I3 )  

using the method proposed by Slater (14). A comparison of these values 

to ones calculated for Y(l l l )  and Am(l l l ) ,  by the same method, provides 

evidence for an effect based solely on electrostat ic interactions. 

Yttr ium and i ts radius cognate, holmium, produce quite dif ferent values 

of 10.90 and 12.40, respectively. The effect is much less 

pronounced, but st i l l  evident in the neodymium, americium pair,  with the 

result ing values being 11.35 and 11.80. The agreement between the 

magnitude of the effect ive charge and the observed stabi l i t ies of the 

complexes is apparent, although i t  must be noted that the Slater treatment, 

represents a very coarse approximation, especial ly for these heavy ions. 

Nevertheless, the possible importance of electrostat ic interactions in 

the relat ive behavior of these complexes, is aptly i l lustrated by i ts use. 

Evidence has been presented that supports either 5f covalency or 

increased electrostat ic interaction as being the source of increased 

complex strength in the tr i  valent act inide complexes, relat ive to the 

complexes formed by lanthanide cations of the same radius. The observed 

effect may, in fact, be a combination of these effects and others. I t  
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should be emphasized that this question represents more than just an 

interesting theoretical exercise. The development of effect ive 

lanthanide-actini de separation schemes wi l l  depend on the design and 

synthesis of l igands which maximize these small  bonding dif ferences in 

the coordination chemistry of the two famil ies. 

A Review of Ln-An Separation Agents 

The numerous proposals for Ln-An separation processes which occur 

in the l i terature (15, 16, 17) are based on relat ively few chemical 

phenomena. The intent of this section is to review these chemical bases 

by ci t ing appropriate examples of their application in ion-exchange and 

solvent-extraction techniques. 

Before beginning the discussion of part icular chemical separating 

agents, i t  is instructive to enumerate the quali t ies necessary for a 

l igand to serve in such a capacity. 

1. I t  should provide adequate separation factors for part i t ioning 

Am and Cm from the lanthanides, especial ly lanthanum through gadolinium. 

2. I t  should be applicable to the acidic media result ing from the 

extraction of the tr i  valent lanthanides and actinides from the other 

f ission products. A low pH range is necessary to prevent substantial 

hydrolysis of these cations. 

3. I t  should possess the necessary chemical and radiat ion stabi l i ty 

to al low i ts use for an extended period. 

h. I t  should not be highly corrosive, viscous or f lammable, or 

possess other physical propert ies which make i ts use impractical.  
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5. I t  should exhibit  good exchange kinetics and thus al low for 

real ist ic residence t imes. 

No known l igand fulf i l ls al l  of these requirements. The few which 

most nearly satisfy the f i rst one wi l l  be the subjects of the fol lowing 

discussions. 

Chloride 

The abi l i ty of tr ivalent americium and curium to form more stable 

chloride complexes than the lanthanides was f i rst observed by Seaborg 

and Street (18) in their ini t ial  experiments with the transplutonium 

elements. They noted that at high HCl concentrat ions (13 M) the actinides 

had a markedly lower aff ini ty for a strong-acid cation exchanger 

(Dowex 50) than did the lanthanides. This separation technique was 

improved by the incorporation of 20% ethanol in the eluent, which 

provided greater separation factors and longer retention t imes (19). 

Further investigations into mixed solvent cation-exchange systems have 

been made (20), but no large-scale use of the chloride cation-exchange 

technique has developed. 

An ion-exchange separations involving the chloride complexes, on the 

other hand, have seen widespread use in the nuclear industry. Hulet and 

coworkers (21) investigated the use of an aqueous 10 iM Li  CI solut ion as 

an eluent in the an ion-exchange separation of tr ivalent lanthanides and 

actinides, and found i t  to be superior to HCl. Distr ibution coeff icients 

(Dowex 1) for the lanthanides ranged from 0.25 (La) to 0.90 (Lu), while 

Am and Cm were found to be 5.0 and 4.0, respectively. Further studies 

by Marcus (22) concluded that the complex species in the resin was 
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AmCl^ .  The addit ion of 0.1 M, NH^OH and 5% methanol by chemists at the 

Oal< Ridge TRU faci l i ty (23) has proven effect ive in suppressing the 

persistent problems of tetravalent cerium and radiolyt iç gas. Use of 

these improvements has made possible the purif icat ion of mult igram amounts 

of americium and curium by the chloride an ion-exchange technique (24). 

The disparity in the aqueous An-Ln chloride complex strength has 

also been ut i l ized in several solvent extraction systems. Tributyl 

phosphate (TBP) (17, p. 200), mono-2-ethylhexylphosphoric acid (MEHPA) 

(25), di-2-ethylhexylphosphoric acid (DEHPA) (26), tr ioctylphosphine 

oxide (TOPO) (26), and diamylmethylphosphonate (DAMP) (26) have al l  been 

investigated as extraction agents for use in concentrated Li CI solut ions 

containing these tr i  valent metals. Schemes incorporating these 

phosphorus based reagents have, however, fai led to equal the exceptional 

separation factors obtained with amine extractants (26). Work with these 

reagents done by Moore (27), at an analyt ical level, and Baybarz (28), 

on a larger scale, led to the development of the widely used TRAMEX 

process (23) for separating the lanthanide and actinide famil ies. 

Figure 3 (23) i l lustrates the str iking dif ferences in extractabi1ity of 

these cations from a sl ightly acidif ied 10 ^ Li CI solut ion, by the 

tert iary amine hydrochloride, Alamine 336-HCl, in a diethylbenzene 

di luent. The rat io of the distr ibution coeff icients of the least 

extractable actinide, Cm, and the most extractable lanthanide, Eu, in

dicates that the Ln-An group separation factor exceeds one hundred. This 

represents one of the largest group separation factors observed to date. 

One might expect the amine extraction mechanism to be analogous to 

the anion-exchange equil ibr ium discussed earl ier in which the resin phase 
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species was postulated to be MCl^ .  Surprisingly, experimental results 

(29) have revealed that the americium distr ibution coeff icient varies as 

the square of the amine concentrat ion, indicating that this is not the 

case. At present, the extraction equil ibr ium is thought to be (22): 

t [(R.NHCl) R,NH],LiAmCf, 
5 p 3 Z b org 

This interpretat ion has been further supported by the coextraction of 

substantial amounts of LiCl which has been observed in recent experiments 

involving macro amounts of americium (30). 

Although the TRAMEX process enjoys excel lent theoretical separation 

factors, i t  is fraught with practical problems (17, p. 229). Radiolysis 

effects which hamper the process include the rapid destruction of HCl, 

and the production of strong oxidants which promote the formation of 

extractable eerie chloride species (23). Tantalum or other such inert 

process equipment is necessary to prevent the formation of insoluble 

corrosion products and emulsions in the concentrated chloride solut ion. 

The presence of nitrate ion impurit ies rapidly compromises the Ln-An 

separation factors from 100, in the absence of nitrate, to 1 (no 

separation), when the nitrate concentrat ion reaches 0.7 M (28). These 

problems proved suff icient to convince workers at the Savannah River 

Laboratory to abandon hope of continuous mult icycle TRAMEX operation, in 

favor of high-pressure displacement-chromatographic cation-exchange 

systems for the purif icat ion of Am and Cm (17. p. 229). In addit ion to 

these factors, TRAMEX use on a scale applicable to reprocessing, would 
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require recycle of the Li CI salt  to prevent the mass of waste to be 

stored from becoming prohibit ive (31). 

Thiocyanate 

The previous discussion noted that concentrated chloride solut ions 

display a marked abi l i ty for Ln-An separation, and that their use Is 

l imited by their corrosive nature. The pseudohalide, thiocyanate, 

possesses a similar aff ini ty for actlnide complex formation, while 

minimizing the corrosive tendency of hal lde solut ions. Evidence exists 

for the formation of the mono-, di-,  tr i - ,  and tetrathlocyanate species 

In aqueous solut ion, and as with al l  known actlnide complexes, the 

thiocyanate l lgand appears to be nitrogen bound (32). 

Cation-exchange processes incorporating the thiocyanate l igand have 

not been closely studied. Surls and Choppin (33)  note that In elut ions 

of Ln-An mixtures with 2 NH^SCN, Am elutes between Pm and Lu, at a 

posit ion coincident with Ho. Elut ion orders using more concentrated 

solut ions are not avai lable, although Keenan (34) reports the elut ion of 

Am with 8 NH^SCN as a preparative method for anion exchange feedstocks. 

An ion-exchange techniques with the actlnide thiocyanate complexes 

have enjoyed considerable populari ty among researchers In transplutonium 

chemistry. Work performed by Thompson and coworkers (19), Coleman and 

coworkers (35), and Keenan (34) Is representative of the development of 

the thiocyanate an ion-exchange method from analyt ical to gram scale. The 

degree to which the anionic americlum complexes are preferential ly sorted 

by an an ion-exchange resin (Dowex l )  is I l lustrated In Figure 4 (36). 

At NH^SCN concentrat ions between 0.5 and 5.0 H, the Am-Eu. separation factor. 
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Figure 4. Anion -exchange absorption from aqueous NH^SCN solutions. 
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r ises gradually from approximately 4 to 6. Noted also was an unexplained 

r ise of the Yb distr ibution coeff icient with increasing thiocyanate 

concentrat ion. 

Russian scientists (37, 38, 39) have investigated the effects of 

alcohol addit ion on anion separations incorporating NH^SCN and 

NH^SCN-HNOg solut ions as eluents. Guseva et al.  observed a doubling of 

the Am-Eu separation factor by using 1 NH^SCN eluents in which the 

methanol content was varied from zero to 70% (37). This author has 

subsequently reported an ion-exchange process for separating amer ic i  urn 

from irradiated plutonium targets (40). In this scheme, t r i  valent 

lanthanides and actinides were loaded onto a strong-base anion exchanger 

from a 1 ^  HNO^ -  90% methanol solut ion, and the group separation was 

attained by the elut ion of the lanthanide fract ion from the resin with a 

0.5 f i  NH^SCN -  0.1 ^ HCl -  80% methanol solut ion. Americium and curium 

were then recovered by a f inal elut ion with 0.5 ^ HNO^ in 80% methanol. 

Solvent extraction methods exploit ing thiocyanate complexes have been 

devised, although, they have not found widespread application. Sekine (41) 

studied the distr ibution of Am and Eu between 5% TBP in hexane, and HaSCN 

solut ions. His results indicated that a mixture of extracting species, 

EufSCNÏgCTBP)^ and EufSCNÏgfTBP), were present. Am was observed to ex

tract to a greater extent than Eu at very low NaSCN concentrat ions, however, 

this dif ferentiat ion disappeared as the thiocyanate concentrat ion increased. 

Later work by Khopkar and Narayanankutly (42) investigated the extraction 

of tr i  valent La, Eu, Am, and Lu from 1 14 NH^SCN by TBP, TOPO, and 

tr ibutylphosphine oxide (TBPO). In al l  cases, the distr ibution coeff icient 

for Am fel l  between those of Eu and Lu. The relat ionship between the 



www.manaraa.com

19 

distr ibution coeff icients and extractant concentrat ion revealed that 

La was extracted as a R^M(SCN)^ species by TOPO and TBPO, and as 

RgMfSCN)^ by TBP. Europium and americium were extracted as R^MfSCN)^ 

species by TBP, TBPO, and higher concentrat ions of TOPO, however at 

lower TOPO concentrat ions, a transit ion to a R^MCSCN)^ species was 

observed. Lutetiurn was extracted as RgMtSCN)^ by al l  three reagents. 

DAMP (26 ) ,  DEHPA (26), and MEHPA (26, 43) have also been the subjects 

of minor investigations, however, none has proven competit ive as a 

Ln-An separation method. 

The use of amine extractants similar to those used in the TRAMEX 

process have been investigated by several workers. Moore (44) has shown 

that the order of decreasing extractabi1ity by 30% Al iquat 336-SCN in 

xylene from a 0.6 ^ NH^SCN solut ion is: 

Cf > Bk > Am,Cm >> Yb > Tm > Eu > Pm > Y > Ce > La. 

The extracting species varied with increasing thiocyanate concentrat ion, 

and moieties containing Am(SCN)^ ,  Am(SCN)g^ ,  and Am(SCN)^^ were 

observed. Gerontopulos et al.  (45) reported the strong dependence of 

distr ibution coeff icients in the same system on temperature, di luent and 

contaminant anions. In spite of these effects, separation factors 

between americium and the lanthanides remained relat ively constant. As 

is the case with al l  thiocyanate solvent extraction systems, no large-

scale use of these amine extractants has been made. 

The ion-exchange and solvent-extraction methods involving thiocyanate 

are al l  plagued by a common f law. While thiocyanate provides workable 

separation factors between Am and Cm, and the lanthanides, the l igand is 
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not suff iciently stable to alpha radiat ion. The presence of macro 

amounts of Am and Cm ini t iates the formation of polymeric sulfur, which 

renders these separation techniques unworkable at the scale required for 

reprocessing (34, 46). Other di f f icult ies include radiolyt ic gas 

formation (34), and handling and disposing of viscous, concentrated 

thiocyanate solut ions (17, p. 237). 

DTPA 

The aforementioned dif f icult ies associated with thiocyanate and 

chloride based systems prompted further work . in Ln-An separation 

chemistry. Much of this effort was directed toward the use of the 

aminocarboxy late l igands which had proven so successful in the large-

scale separation of the pure lanthanide elements (47). The actinide 

selectivi ty of a variety of these l igands has been investigated, however 

the steep monotonie increase in complex strength general ly exhibited by 

these chelates across the lanthanide sequence inhibits their usefulness 

by interspersing Am and Cm within the lanthanide series. Fortunately an 

important exception to this behavior was discovered in the case of 

diethylenetr iaminepentaacetic acid (DTPA). Figure 5 i l lustrates the 

results of An and Ln stabi l i ty constant determinations performed by Moeller 

and Thompson (48), and Baybarz (49), which formed the basis for several 

important ion-exchange and solvent-extraction systems. Stabi l i ty 

constants for ethylenediaminetetraacetic acid (EDTA) (50) and 

1,2-cyclohexanediaminetetraacetic acid (CDTA) (50, p. 236) are included 

for comparison. In the cases of EDTA and CDTA, the continuance of the 

increase in complex stabi l i ty throughout the heavy lanthanon range causes 
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Figure 5- Stabi l i ty constants of the rare-earth complexes formed by 
several aminocarboxylates. 
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the americium value to be intermediate between gadolinium and terbium. 

This phenomena makes a clean separation of americium from the entire 

lanthanide family impossible. In opposit ion to the monotonie trend 

observed in these aminocarboxylates, the maximum lanthanide stabi l i ty 

constant for the DTPA sequence occurs at dysprosium ( log K=22.82). 

This al lows the sl ightly larger value of the Am-DTPA stabi l i ty constant 

( log K=22.90) to be a suff icient basis for separation of this element 

from the entire lanthanide family. 

DTPA has been proven by a number of workers to be a useful cation-

exchange reagent for Ln-An separations. This ut i l i ty is a consequence not 

only of the inherent Ln-Am,Cm separation factors, but also of i ts abi l i ty 

to be used in a displacement development mode. In this form of cation-

exchange chromatography the mixture to be separated is eluted as a 

compact band by the use of a di lute complexone solut ion of relat ively high 

pH, and a resin bed saturated with a retaining ion. As the elut ion 

progresses, discrete bands of pure material form, and are eluted from the 

N resin in the order of decreasing stabi l i ty of thé l igand-metal complex. 

In the case of DTPA at 25°C one would expect the elut ion order to be: Cm, 

Am, Dy, Ho, Er, Tb, etc. Port ions of this expected elut ion order have 

been observed by James, Powell ,  and Burkholder (51), however, no mention 

of Am displacement experiments employing eluents at this temperature was 

found. Wheelwright and Roberts (52) at Hanford, and Lowe et al.  (53)  at 

Savannah River, have used the DTPA displacement technique at 70°C, and 

pH = 6.0, for production of mult igram amounts of Pm, Am, and Cm. Work at 

such elevated temperatures offered improved kinetics and thus lower 

resin requirements, although these benefi ts seem to have been 
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obtained at the price of decreased selectivi ty. Hale and Hammer (54) 

reported a substantial ly dif ferent elut ion order at 70°C, pH = 6.0: 

Cm, (Yb, Tm, Ho, Er), Dy, Lu, Am, Tb, (Gd, Eu), Sm, Pm, Nd, Pr, Ce, La. 

High pressure operations with f ine resin have been developed by several 

authors (55, 56) in an effort to improve exchange kinetics further and 

thus minimize radiolyt ic gassing and resin decomposit ion. Current f low

sheets (57) for reprocessing consider the DTPA displacement cation-

exchange technique the method of choice for Ln-Am,Cm separations. 

in contrast to l igands discussed in previous sections, an ion-exchange 

techniques ut i l iz ing DTPA have played no part in Ln-An separations. Early 

work done by Baybarz (57) reported that the DTPA-metal complexes did not 

readily sorb on an ion-exchange resins. In spite of the contrast between 

this f inding and Baybarz's later reports of strong sorption with EDTA 

complexes (58), l i t t le has been done to reconci le this anomaly. 

The role of DTPA in solvent extraction systems has been principal ly 

one of sequestering Am and Cm in the aqueous phase, while al lowing 

extraction of the lanthanides. Processes ut i l iz ing TBP (59, 60), 

DEHPA (61), or tr i lauryl amine (59) to extract the lanthanides preferen

t ial ly from concentrated nitrate salt-DTPA solut ions have been investigated. 

Unfortunately, these nitrate-containing systems are only marginal ly 

effect ive in separating the actinides from the heavy lanthanides, and are 

plagued with very slow kinetics ( i .e. equil ibr ium times approaching 30 

minutes for the Eu-DEHPA system). 

In 1968, Weaver and Kappelman published a study (62) describing the 

preferential DEHPA extraction of the lanthanides from Ln-An mixtures in 

DTPA-carboxyl ic acid solut ions. The substi tut ion of carboxyl ic acids for 
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the nitrate salts used in the previous systems, improved the kinetic 

problems associated with those techniques and retained the desired 

selectivi ty between Am and the heavy lanthanides. The signif icant Ln-An 

discrimination observed for the DEHPA-lactate-DTPA system is graphical ly 

depicted in Figure 6. The rat io of the distr ibution coeff icients for 

the least extractable lanthanide, and Am and Cm, indicates a group 

separation factor on the order of 70. The use of lact ic acid, in 

preference to other carboxyl ic acids, was suggested by the increased 

abi l i ty of hydroxycarboxy1ic acids to retard the extraction of americium 

(62), and due to the substantial solubi l i ty of the lactate-Ln complexes 

relat ive to those formed by other hydroxycarboxyl ic acids (I7i p. 212). 

DEHPA may be replaced by 2-ethylhexylphenylphosphoric acid (62), or 

di isodecylphosphoric acid (63) to obtain similar separation factors with 

higher distr ibution coeff icients. 

The kinetics of the TALSPEAK process, as i t  is now commonly cal led, 

has been investigated brief ly (64). The ini t ial ,  and slowest step in the 

extraction mechanism, cal ls for the formation of a lactate-metal complex 

by displacement of the DTPA l igand: 

Ln-DTPA + lactate ^ Ln-lactate + DTPA. 

The extraction is completed by the rapid reaction of two DEHPA molecules 

with the monolactate complex, to form the organic soluble species: 

2 DEHPA + Ln-lactate^^ ^ Ln-lactate(DEHPA)2 + 2H^, 

The reaction rate for lanthanide extraction decreases rapidly with in

creasing atomic number. From La to Eu, a tenfold drop in rate constant 
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Figure 6. Extractabi1ity of lanthanides and actinides from 1 M lact ic 
acid -  0.005 ^ DTPA solut ion at pH 2.0 by DEHPA in 
d i I  sop ropy1 benzene. 
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is evident, although i t  is unknown whether this trend continues through

out the heavy lanthanons. 

The radiat ion effects on TALSPEAK type extractions have recently been 

explored by Tachimori and Nakamura (65). Their studies of the effect of 

5 X 10^ rad/hr Co^^ gamma radiat ion on Nd-Am separations concluded that 

the radiat ion-induced r ise in the Nd and Am distr ibution coeff icients and 

the decrease in the Nd-Am separation factor were both suppressed by the 

presence of lact ic acid in the aqueous phase. The presence of nitrate ion, 

in contrast, enhanced both of these effects. The main chemical effect of 

ionizing radiat ion on the extraction appeared to be the production of MEHPA 

from DEHPA, and the destruction of DTPA, both of which are inhibited by 

lact ic acid. The Japanese dispute the deleterious effect of MEHPA on the 

Ln-An separation factors reported by Fardy and Pearson (66), and claim that 

in doses below 200 watts/L these radiolyt ic effects may be ignored. 

TALSPEAK and i ts modif ications appear, at present, to be the only 

real chal lenge to the DTPA displacement development technique (67). The 

extraction method has not, however, been operated with actual waste feed, 

or at the scale necessary for reprocessing. Process problems such as 

those which plagued the solvent extractions systems in previous sections 

appear to be the rule, rather than the exception, and thus considerable 

investigation must be completed before TALSPEAK becomes a proven method. 

Amine extractants have not been widely used in conjunction with DTPA, 

in fact, only two reports are to be found. In 1966, Moore (68) reported 

the extraction of tracer quanti t ies of Am and Eu from 0.004 ^ DTPA 

solut ions with 20% Al iquat 336 in xylene. The Am-Eu separation factors 

at al l  pH's were very poor, however, i t  is curious that a DTPA-metal 
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complex could be extracted at al l .  No further mention of this type of 

DTPA extraction was found. Russian scientists have recently reported the 

use of DTPA and other aminocarboxylates as aqueous sequesterants for the 

transplutonium elements, in amine-based extraction systems from concen

trated LiNOg solut ions (69). The observed Am-Eu separation factor was 

high (8.0), but inferior to TALSPEAK, and no heavier lanthanides were 

i  nvestigated. 

DTPA has proven i tself  to be an effect ive Ln-An separator in a 

variety of ion-exchange and solvent-extraction methods. I ts major 

shortcomings appear to be kinetic in nature, arising from extreme 

stabi l i ty of i ts lanthanide and actinide complexes. In addit ion, the 

general inabi l i ty to extract DTPA-metal complexes, demands the rather 

ineff icient operation of extracting the majori ty component of the mixture, 

the lanthanides, in order to separate i t  from a small  amount of material 

(Am and Cm). A reverse configuration would be more desirable. 

Miscel laneous 

A number of reports have been published describing processes, un

related to the previous discussions, which have shown some capabil i ty in 

separating Am and Cm from the lanthanides. In al l  cases, this work is 

st i l l  in a formative stage and the detai ls are quite sketchy. These 

ci t ings may, however, provide a gl impse at future possibi l i t ies for 

Ln-An separations. 

In 1966 Sekine and Dyrssen (70) reported screening a variety of 

phenol-type chelat ing acids for possible use in separating Am and Eu by 

solvent extraction. In contrast to most of the chelates examined, 
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5,7-dichloroxine (5,7-dîchloro-8-hydroxyquinol ine, HDCO) was observed to 

extract tracer quanti t ies of Am tenfold more effect ively than Eu. Ten 

years later, two ci t ings (31, 7-1) revived interest in HDCO and 

a similar compound, 5-nitroxine (5-nitro-8-hydroxyquinol ine, H5N0), by 

report ing Ln-An separation factors of 53.7 (Am-Eu) and 4.9 (Am-Tb) for 

H5N0 in chloroform. The extracting species was determined, by the pH 

dependence of the distr ibution coeff icient, to be the neutral M(H5N0) 

molecule. Americium separation factors for lanthanons heavier than Tb 

were not determined, although Am was assumed to extract coincidently 

with Dy. On this basis, a two-step solvent extraction method for 

separating Am from the lanthanides, was suggested. In the f i rst step, 

DEHPA was proposed as an extractant to separate the l ight lanthanides 

and americium, from the heavy lanthanides. Subsequent extraction with 

H5N0 would be used to separate americium from the l ighter lanthanons. 

Unfortunately, the practical appl ication of such a system is severely 

l imited by the low acid strength of H5N0. Signif icant extraction with 

this reagent does not begin unti l  the pH exceeds four, a value precariously 

close to the pH (5~6) at which hydrolysis dominates the aqueous chemistry 

of these tr ivalent cations. 

Musikas et al .  recently reported the abi l i ty of azide and 

orthophenanthrol ine l igands to form stronger complexes with Am than with 

any of the lanthanides (10). Orthophenanthrol ine was then incorporated 

in a solvent extraction system with nonanoic acid in nitrobenzene, and 

ut i l ized in tracer scale Am-Eu separations. In the pH range where 

extraction occurred (4.5-5.0), Am was extracted approximately eighteen 

t imes more eff iciently than Eu. 
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Some rather exotic separation techniques have been employed in the 

f inal two works to be discussed in this section. Foos and Mesplede (72) 

have described the preferential extraction of the lanthanides by 

tetraphenylbutylene disphospinate from a 

LiNOg-KNOg molten salt  phase at 160°C. The tr ivalent actinides Am, 

Cm, and Cf are not signif icantly extracted under these condit ions. And, 

in work with inorganic sorbents, Schulz, Koenst, and Tal lant (73) 

concluded that Am and Cm have a sl ightly greater aff ini ty for ^(TigOgH), 

HfZrgOgH), and H^NbgO^H) phases than do the lanthanides they investigated 

(La, Pm, Gd, Eu). The separation factors are small  (1.2), and problems 

relat ing to concentrat ion and kinetic effects appear to be formidable. 

Traits Apparent in Effective Ln-An Separation Agents 

I f  one attempts to general ize the characterist ics common to the 

l igands successful in Ln-An separations, two traits emerge. First,  al l  

successful l igands exhibit  a lanthanide stabi l i ty constant sequence which 

attains i ts maximum value in the mid-lanthanon range. This is apparent 

in the maximum extractibi1ity of the europium complex for TRAMEX, in the 

maximum thiocyanate (3 ^) anion-exchange distr ibution coeff icient with 

Eu(SCN)^ ,  and in the minimum TALSPEAK extraction of Nd, Pm, and Sm from 

DTPA solut ions. Since a maximum in the lanthanide stabi l i ty constant 

sequence is seldom observed before Eu, the second characterist ic necessary 

to a useful l igand is the maximization of the increased relat ive stabi l i ty 

of actinide complexes discussed earl ier. I t  fol lows that the desired 

separations are only possible when, by shif t ing the Ln stabi l i ty maximum 

toward the l ighter lanthanons and maximizing the actinide complex strength 
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relat ive to i ts radius, the l igand aff ini ty for Am and Cm is al lowed to 

r ise above that of al l  the lanthanides. The fol lowing sections of this 

dissertat ion describe the investigation of several l igands which exhibit  

some measure of these desired characterist ics. 
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PART 1. THE AQUEOUS COORDINATION CHEMISTRY OF 2,3-DIHYDROXY-
2,3-DIMETHYLBUTANOATE WITH THE TRI VALENT LANTHANIDES, 
AMERICIUM AND YTTRIUM 
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INTRODUCTION 

Hydroxycarboxyl ic acids are well  known for their appl icabi l i ty as 

eluents in cation-exchange processes. Al iphatic monoprotic hydroxyacids 

( i .e.,  a-hydroxyisobutyric acid) have been especial ly valuable in the 

intragroup fractionation of the lanthanide and actinide elements (74). 

The ut i l i ty of these reagents has, unfortunately, not extended into the 

An-Ln separation problem described earl ier. Actinide and lanthanide 

hydroxyacid complexes exhibit  a continuous r ise in stabi l i ty across these 

series, similar to that displayed by EDTA and CDTA. Analogous to the 

behavior of those aminocarboxylates, the hydroxyacids also intersperse 

the tr ivalent actinides within the lanthanide elut ion sequence, making the 

reagents worthless for An-Ln group separations (74). 

in 1975 Powell ,  Parrel 1, and Kulprathipanja (75) reported the 

anomalous lanthanide stabi l i ty sequences of the 2,3-dihydroxy-

2-methylpropanoato (DHMP) and 2,3-dihyroxy-2-methylbutanoato'(DHMB) chelate 

species. As can be seen in Figure 7, the values of the dihydroxy acid 

chelates did not exhibit  the monotonie increase displayed by the 

2-hydroxy-2-methylbutanoato (HMB) species (75). The f i rst formation 

constants of the dihydroxycarboxy late complexes revealed an increase in 

stabi l i ty from lanthanum to samarium and a subsequent decrease from 

europium to terbium or dysprosium, fol lowed by an increase throughout the 

rest of the series. An explanation for this, behavior was presented in 

terms of a gradual change from tr identate l igandcy, involving both 

hydroxy 1 groups and a carboxylate oxygen atom, to a bidentate chelat ion 

incorporating the 2-hydroxyl group and a carboxylate oxygen. This 
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Figure 7- values of the 1:1 lanthanide chelate species formed by 

several hydroxycarboxylates. 
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transit ion in chelat ion mode was fel t  to be indicative of a change in 

lanthanide coordination number similar to that observed by other 

authors {76,  77)•  

Taga £]_. (78)  has also recently reported experiments which display 

the importance of the 3-hydroxyl group in the chelat ion propert ies of a 

similar dihydroxycarboxyl ic acid, 2,3-dihyroxypropanoic acid (glyceric 

acid). He proposed tr identate behavior in the aqueous 1:1 europium(I 11) 

glycerate complex, based on calculat ions describing the lanthanoid 

induced 'h NMR shifts. These calculat ions indicated that the 3-hydroxyl 

oxygen atom is more t ightly held than the 2-hydroxyl oxygen atom 

(2.33 % v^ 2.42 A). 

The appearance of the relat ive maximum observed at samarium or 

europium in the dihydroxycarboxylate stabi l i ty sequences was encouraging, 

in i ts similari ty to the curve shape exhibited by the known effect ive 

An-Ln separation agents, in addit ion, the effect was enhanced by 

increased methyl substi tut ion of the three posit ion carbon atom. Comparison 

of the DHMB curve with that of DHMP revealed a shif t  of the relat ive 

maximum from europium back to samarium, and an increase in the magnitude 

of this maximum with respect to the heavy lanthanides. These phenomena 

motivated the investigation of the complex stabi l i t ies and An-Ln separation 

chemistry of the 2,3-dihydroxy-2,3-dimethylbutanoate chelates. 
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EXPERIMENTAL 

2,3-ci ihyclroxy-2,3-ci imethylbutanoic Acid 

The 2,3-dihydroxy-2,3"dimethylbutanoic acid (DHDMB) was f i rst 

synthesized by Powell  £L* (79) using the fol lowing route: 

OH 0 OH OH 

I II I I 
CH -  C -  C -  CH. CH- -  C -  C -  CN 

3 I  3 KCN 3 I  I  

CH^ CH^ CH^ 

OH OH 0 OH OH 0 /8 M HCL 50 

I  I  I I  6 M HCL I  I  I I .  
CH- -  C -  C -  C < "  CH, -  C -  C -  C -  NH_ 

3 I I \ 50° ) I  I ^ 
CH^ CH^ OH CH^ CH^ 

The acid, kindly provided by the above, had been purif ied by ion exclusion 

on beds of hydrogen cycle, Dowex 50W-Xb cation-exchange resin, fol lowed 

by sorption on an acetate form anion exchanger, displacement by 0.25 ^ HCL, 

and recrystal1ization from chloroform. The puri f ied DHDMB exhibited an 

equivalent weight of 148.95 = 148.16), and melted between 

102-104°C. The carbon, hydrogen and oxygen weight percents: C, 48.4; 

H, 8.3; 0, 43.3, closely matched those calculated for C, 48.64; 

H, 8.16; 0, 43.20. 

Reagents 

Tri  valent rare-earth ni trate solut ions 

Approximately 0.1 M rare-earth nitrate solut ions were prepared by 

di lut ion of avai lable stock solut ions. These concentrated solut ions had. 

ACgO 

25° 
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în turn, been prepared from the corresponding oxides by Mr. James Parrel 1, 

using the method described by Adolphson (80). The di lute metal ni trate 

solut ions were standardized either by a gravimetric technique in which the 

metal was precipitated as the oxalate, and ashed to the oxide, or by 

complexometric t i t rat ion with EDTA, using xylenol orange as an 

indicator (81). 

Potassiurn hydroxide solut ions 

Various standard potassium hydroxide solut ions ut i l ized throughout 

this work were prepared by di lut ion of ampoules of carbonate-free KOH 

(Anachemia) with boi led dist i l led water. The result ing solut ions were 

standardized by repeated t i trat ions of primary standard grade potassium 

acid phthalate and protected from CO^ by an Ascarite/Drieri te trap. 

Potassi urn ni  trate solut ion 

The approximately 1.0 ^ solut ion of potassium nitrate, used for 

ionic strength adjustment, was prepared by dissolut ion of reagent grade 

KNOg in boi led dist i l led water. This salt  solut ion was then standardized 

by passing al iquots through a well-washed, hydrogen-form, cation exchanger 

(Dowex 50) and t i trat ing the result ing acid washings with standard base. 

Nitr ic acid so]utions 

The nitr ic acid solut ions were prepared from reagent grade HNO_ and 
J 

standardized by t i trat ion with standard base. 

DHDMB buffer solut ions 

Buffer solut ions ut i l ized in the anion protonation constant and 

complex formation constant determinations were prepared by dissolving a 
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weighed amount of puri f ied DHDMB suff icient to produce an approximately 

0.1 1^ solut ion. Standard potassium hydroxide was then added to produce 

the desired anion concentrat ion. The remaining free acid concentrat ion 

was confirmed by t i trat ion of al iquots of the buffer solut ion with 

standard base. 

DHDMB eluents 

Eluents used in the ion-exchange experiments were prepared by 

dissolut ion of the necessary amount of puri f ied DHDMB to produce a 

0.4 solut ion. The pH of these eluents was adjusted to the desired 

value by the dropwise addit ion of concentrated NH^OH. 

241 
Am ni trate solut ion 

Approximately one mil l icurie of americium nitrate (t ,  = 458 yr) 
2 

was purchased from New England Nuclear and received on 4/24/79» 

Convenient specif ic act ivi t ies for the tracer-scale ion-exchange 

experiments were produced by di lut ion of the received sample to one 

mil l i l i ter, and subsequent di lut ion of a 100 y] al iquot of this primary 

stock solut ion in a 10 ml volumetric f lask. These di lut ions, which 

were kindly and expert ly executed by Mr. Ken Malaby, produced an 

act ivi ty of approximately 10 yCi/ml. The remaining primary stock 

solut ion is presently stored in the Ames Laboratory hot canyon. 

^^^Eu nitrate solut ion 

Approximately one mil l icurie of europium nitrate (t^ = 1.81 yr) 

was purchased from New England Nuclear and received on 4/24/79. A 

10 yCi/ml solut ion was produced in a fashion analogous to that described 
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for the americium solut ion. The remaining stock solut ion of europium 

is also presently stored in the Ames Laboratory hot canyon. 

Liquid scint i l lat ion cocktai l  

The dioxane-based scint i l lat ion cocktai l  used in counting the ion-

exchange eff luent was a "Bray's Solut ion" purchased from New England 

Nuclear. 

DHDMB Anion Protonation Constant 

Knowledge of the DHDMB anion protonation constant (a = [HA]/[H][A]) 

is a prerequisite to the investigation of the DHDMB-metal complex 

formation equil ibr ia. This constant, which described the equil ibr ium 

H+ + A" 2 HA 

was obtained from pH^ measurements on a series of independently prepared 

DHDMB solut ions, each containing a dif ferent amount of the DHDMB buffer 

stock solut ion. These solut ions were adjusted to 0.1 ^ ionic strength 

by the addit ion of appropriate amounts of KNO^ which were calculated 

from an estimated protonation constant value, using the i terat ive 

computer program ALFA (87). To insure attainment of equil ibr ium, the 

DHDMB solut ions were condit ioned in a water bath, thermostatted to 

25.00 ± .05°C, for at least twelve hours prior to measurement. 

The pH^ measurements were accomplished by the use of a Corning Model 

101 Digital Electrometer equipped with a Beckman glass electrode, a 

Beckman sleeve-type reference electrode, and a plat inum solut ion ground. 

This electrode arrangement was placed inside a closed thermostatted 

vessel with provisions for the introduction and removal of the sample. 
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and a protective nitrogen atmosphere. The system was cal ibrated and 

sloped by ut i l iz ing a series of standard HNO_ solut ions adjusted to 
i 

0.1 ^ ionic strength. Standardization of the instrument in this fashion 

results in the determination of the hydrogen ion concentrat ion rather 

than i ts activi ty. Each sample was measured repeatedly unti l  stable 

values were obtained. 

Rare Earth-DHDMB Complex Stabi l i ty Constants 

The f i rst,  second, and third formation constants for the DHDMB 

anion and the tr i  valent cations of the lanthanides and yttr ium were 

determined from pH^ measurements of solut ions containing f ixed amounts 

of metal and variable amounts of the DHDMB buffer stock. The solut ions 

were also adjusted to 0.1 M^ ionic strength by the addit ion of the 

required amounts of KNO^, These amounts were, in turn, calculated from 

estimated stabi l i ty constant values, by using the computer program 

BETA (82). Equil ibrat ion and measurement of the pH^ values for the 

metal-buffer solut ions was done as described previously for the DHDMB 

anion protonation constant determination. The stabi l i ty constants were 

calculated using a mult iple l inear regression scheme incorporated into 

the computer program OMEGA (82). The equations underlying this method 

are discussed in a subsequent section. 

Tracer Cation-Exchange Experiments 

241 
Cation-exchange experiments incorporating tracer-level Am and 

^^^Eu were performed to determine the feasibi l i ty of An-Ln separations 

with DHDMB. An Altex 2 mm X 500 mm chromatograph column, septum inject ion 

port,  and Teflon tubing and f i t t ings were al l  purchased from 
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Ranin Corporation. The inject ion port was attached directly to the top 

of the column and surrounded by a spi l l  guard. Analyt ical grade 

Dowex 5ow-8 200-400 mesh was employed as the cation-exchange resin. The 

eff luent col lect ion was achieved using a drop-counting type Packard 

sample col lector which was modif ied to accept scint i l lat ion vials. 

Prior to inject ion of the tracers, the cation exchanger was 

equi l ibrated by passing at least ten column volumes of eluent through 

the column. The scint i l lat ion vials used for sample col lect ion were 

then f i l led with 10 ml al iquots of the scint i l lat ion cocktai l ,  and loaded 

into the sample col lector. The column, photometric drop counter, and 

turntable were al igned to insure the successful col lect ion of al l  of the 

eff luent. 

The tracer mixture injected onto the cation exchanger was prepared 

by pipett ing 10 pP. each of the tracer stock solut ions onto an indented 

glass sl ide. The individual drops were mixed together with the point 

of the inject ion syringe, drawn into the syringe, and injected through 

the septum injector onto the top of the column. The eluent pump was 

then started (f low rate = 3 drops/min) and sample col lect ion was begun. 

Seventy-f ive ten-drop samples were col lected and counted by the l iquid 

scint i l lat ion technique. 

Although the l iquid scint i l lat ion counting technique is not widely 

used for discriminative counting of heavy isotopes, a recent reference 

involving the detection of americium and plutonium in biological samples 

indicated that this technique might be feasible for counting the 

eff luent (83). Figure 8 displays the scint i l lat ion spectrum observed for 

155 241 
Eu and Am on the Beckman l iquid scint i l lat ion counter kindly made 
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Figure 8. Liquid scint i l lat ion spectra of '^^Eu and Am. 
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avai lable by the Health Physics group. This spectrum clearly shows the 

feasibi l i ty of discriminating between ^^^Eu (0-250 energy units) and 

2 4 1  
Am (400-700 energy units) at a gain sett ing of 225. The window 

sett ings used in counting the Ion-exchange experiments ut i l ized these 

values. 

Al l  radiochemical manipulat ions were conducted in a spi l l  tray 

covered with absorbent paper. Gloves and a f i lm badge were worn at 

al l  t imes. Numerous surveys for contamination were made both by the 

author and by the Health Physics group. Thanks to careful experimentation, 

and the advice and encouragement of Mr. Bob Staggs, no such problems arose. 

Calculat ions 

This section of the dissertat ion Introduces the mathematical 

methods by which the DHDMB anion protonation constant and the DHDMB-rare 

earth complex stabi l i ty constants were calculated. The computer programs 

which incorporate these principles were developed by previous members of 

this research group (82). The fol lowing mathematical methods are 

discussed both for the sake of completeness and for comparison to a 

method developed in a subsequent section. 

DHDMB anion protonation constant 

The equil ibr ium defining the aff ini ty of the DHDMB anion (A) for 

protons is conveniently writ ten: 

H + A 2 HA. 

The equil ibr ium constant for this formulation is commonly cal led a, 

where a = [HA]/[H][A]. The determination of a is performed by measuring 
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the pH^ values of solut ions of known stoichiometry which contain 

part ial ly neutral ized DHDMB acid. The mass balance equations for these 

solut ions are: 

total t i tratable hydrogen 

= [H] + [HA] 

= [H] + oi[H][A] 

total anion 

aj. = [a] + [ha] 

= [a] + a[h][a]. 

The rat io of these two equations el iminates the [A] term and, after 

rearrangement, al lows the direct computation of the protonation constant 

from the relat ion: 

a = {[H] -  H^)/(H^ -  [H] -  A^)[H]. 

Rare earth-DHDMB stabi l i ty constants 

The equi l ibr ia which describe the formation of the DHDMB-rare earth 

complexes may be viewed as one of two dif ferent sets of simultaneous 

reactions. The f i rst set: 

M + A MA 

MA + A MAg 

MAg + A Z MA^ 

is described by the equil ibr ium constants: 

= [MA]/[H][A] 

«2 = [MA2]/[MA][A] 
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= [ma^J/EMA^DCA].  

The second set of equil ibr ia which may be used to describe the system 

consists of the reactions: 

M + A Î MA 

M + 2A Z MAG 

M + 3A Î MA^. 

These reactions are, in turn, described by the equil ibr ium constants: 

3^ = [MA]/[M][A] 

@2 = [MAgl/CMjCA]^ 

33 = [ma^J/EMICA]^.  

I t  is not di f f icult  to show that the equil ibr ium constants defining the 

two sets are related by: 

The overal l  stabi l i ty constants (3^, Bg, and 3^) al low a more compact 

computational formation of the simultaneous equil ibr ia. The stepwise 

stabi l i ty constants (K^, K^, and K^) are usually more helpful in 

conceptual izing the chemistry of the complex formation. 

The mass balances necessary for the computation of 3|,  gg» ^nd 3^ 

are: 

= [A] + [HA] + [MA] + 2[MA2] + SfMA^] 

and 

Mj. = [M] + [MA] + [MAg] + [MAg]. 

Equivalently, 

\ = [A] + A[H][A] + 3,[M][A] + 232[M][A]^ + 333[M][A]^ 
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and 

= [M] + 6,[M][A] + &2[M][A]2 + GgCMlCA]^. 

Since the individual terms of the l igand and metal mass balances are 

separable in terms of [H] and [M], rearrangement of the l igand balance and 

division by the metal balance results in a formulation independent of [M]: 

\ - [fl] - ^ 

M 1 + 0^[A]^ 
^ x=1 *  

Cross mult ipl icat ion and simpli f icat ion yields: 

[A] + a[H][A] -  A = (A -  [A] -  a[H][A] -  XM ) [A]* 6 
t  x = l  t  t  X  

which is of the form 

Y = J,B, + + J3S3. 

Since [H] is measured and [A] can be calculated from the relat ion 

[A] = (Hj. -  [H])/a[H], the values of Y, ,  J^, and are known for 

each solut ion. Knowledge of three such data sets would al low an 

algebraic solut ion of the system for and 3^. 

In practice more than three solut ions are measured, and the then 

overspecif ied system of equations is solved using a least-squares 

mult iple l inear regression. This regression, as described by Draper and 

Smith (84) and implemented in the OMEGA program by J. H. Mil ler (82), 

proceeds by minimizing the sum of the squares of the residuals e..  By 

definit ion the residual of the i th observation is: 

E i  =  Y i  -  ( J , j 3 ,  +  J g i ^ z  
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The sum of the squares of these residuals is minimized by sett ing the 

part ial derivatives with respect to each equal to zero. Thus: 

s .  E = Z (Y| -  S , J , i  -  V2i "  

îëT ° ^ " 8| l̂i " ®2''2i " ° 
I 

-2 I  v)2|(YJ -  3,J,J -  -  GgJg;) = 0 

63^' ^ ^3i^^i '  ̂Hli  "  ^2^2i "  

Collect ing terms yields: 

z "  :  ViHsi ° 

:  9,^3,^,1 + :  h ' l x ' i x  *  :  V3i'  ° '  •'Si ' l -

In matrix form: 

E J,, '  
'  ̂11^21 

^ ^l i^2i ^ ^2i '  

^ ^ l iSi 

^ ^2i^3i 

E «J11J3; ^ ^21^31 ^ ^3i 

^1 
I J,/ 

^2 
= I 

^2 
l 

Matrix equations of this form are easi ly solvable for 3^, 32» and 3^ by 

using the Gaussian el imination subroutine DGELG, avai lable at the 

Iowa State University Computation Center. 

In an effort to al low for dif ferences in the inherent error of the 

individual solut ion stoichiometries, the regression is weighted relat ive 

to ,  [A], and M^. The weighting factors are calculated from: 



www.manaraa.com

47 

w. = 1/6.2 

where 6.,  the standard error, is given by: 

6e. 6E .  6e. 

^ i  "  4'A^ + i ïÂT 9'[A] •*• 5M^ 

°c 
q ' c  = C (C = A^,  [A] ,  M^). 

The variable is the standard deviat ion of c, and the quotient o^/C 

is the calculated average relat ive error in c. Since the values of 

3|,  $2» and 3^ appear in the part ial derivi t ives, an i terat ive scheme 

is used in which assumed values of and are used to calculate 

the w. values which are, in turn, used to calculate new values for 

gj,  $2' ^3* 
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RESULTS AND DISCUSSION 

The Protonation and Rare-Earth Complex Formation Constants 

The protonation and rare-earth complex formation constants of the 

DHDMB anion were calculated from the data in Appendix A. The value 

•2 
obtained for the DHDMB anion protonation constant, a, was 2.44 x 10 .  

This result can also be expressed in a more famil iar manner by taking the 

inverse of a, and thus obtaining the acid dissociat ion constant, K^, of 

-4 
the DHDMB acid. The result ing value is 4.10 x 10 

The individual step formation constants computed for the 1:1, 2:1, 

and 3:1 DHDMB-rare earth chelates are given in Table 2. These values are 

the results of the three parameter mult iple l inear regression procedure 

described previously. 

The plot of log Kj ^  crystal ionic radius is given in Figure 9 for 

the lanthanide DHMP, DHMB, and DHDMB complexes. The change in dentate 

character observed for DHMP and DHMB is again evident in the DHDMB 1:1 

chelate series. I t  is also apparent that the inductive effect of an 

addit ional methyl group in the 3 posit ion has resulted in a signif icant 

increase in the f i rst formation constant of the DHDMB complexes compared 

to those formed by DHMB. The magnitude of this increase underscores the 

importance of the coordination of the lanthanide ion by the, now more 

electron-rich, 3"hydroxyl group. Further evidence of the strength of this 

bond is found by comparison of the log values in the region from terbium 

to lutet ium. I t  was previously proposed that the decreased value of 

for DHMB with respect to DHMP in this region was due to steric effects 

which arose from a transit ion from tr identate to bidentate (75) 
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Table 2. Formation 
(25°; 1 = 

constants 
0.1). 

of rare--earth DHDMBA chelate species 

Cation 
" l  "2 S K,/K2 log Kj 

y3+ 1510® 196® 51® 7.7 3.18 

La3+ 652 71 4 9.2 2.81 

Ce3+ 1190 88 16 13.5 3.08 

Pr3+ 1720 126 13 13.6 3.24 

Nd3+ 2350 160 21 14.7 3.37 

Sm3+ 3280 271 22 12.1 3.52 

Eu3+ 3110 286 55 10.9 3.49 

Gd^"*" 2660 345 53 7.7 3.42 

Tb3+ 2020 368 35 5.5 3.31 

Dy3+ 2000 390 41 5.1 3.30 

Ho3+ 2130 317 59 6.7 3.33 

Er3+ 2400 275 55 8.7 3.38 

Tm^"*" 2780 204 65 13.6 3.44 

Yb3+ 3160 257 16 12.3 3.50 

Lu3+ 3790 293 20 12.9 3.58 

^The l isted values are estimated to be rel iable to ± 2% of the 

value reported; to ± 5%; to ± 20%. 
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Figure 9. Log Kj values for the 1:1 lanthanidc chelate species formed 

with several dihydroxycarboxylates. 
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coordination. This transit ion freed the 3"hydroxyI group producing an 

adverse steric effect which increased with the size of the uncoordinated 

part of the l igand and attenuated the coordinative power of DHMB as 

compared to DHMP. Continuing along this l ine of reasoning, one would 

expect the values for DHDMB in this region to be even smaller than 

those for DHMB as a result of the increased substitution at the 3 posit ion. 

This behavior was not observed, in fact, the Kj values obtained were 

considerably higher than with either of the previous dihydroxyacids 

investigated. The explanation for these unexpected results l ies in the 

strong coordination of the dimethyl substituted 3-hydroxyl group. In the 

previous cases involving bidentate behavior of DHMP and DHMB, the 

coordination of the 2-hydroxyl group was favored over that of the 

3-hydroxyl group due to i ts proximity (formation of a f ive-membered r ing) 

and the equal or greater substitution of the 2-posit ion by electron donating 

methyl groups. This is no longer the case for DHDMB in which the 3 

posit ion has two methyl substituents. Molecular models also reveal that 

a transit ion from tr identate coordination to a "3-hydroxyl bidentate" 

situation could easily be accomplished, without disruption of the 3" 

hydroxyl-lanthanide bond or increased steric hindrance, by a simple 

rotation of the 2-hydroxyl group around the carbon chain. The result ing 

coordination of the 3-hydroxyl group and one carboxylate oxygen would 

prevent an adverse steric effect and thus explain the present observa

t ions. 

Similar transit ions in coordinative behavior are evident in the 

graph of values for DHMP, DHMB, and DHDMB shown in Figure 10. In the 

region from lanthanum to neodymium al l  three dihydroxyacids fol low a trend 
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Figure 10. values for the 2:1 lanthanide chelate species formed with 

several dihydroxycarboxylates. 
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of sl ightly decreased value with increased methyl substitution, 

indicating some adverse steric effect. The coordination with these 

lanthanons is probably best characterized as tr identate, however the 

3-hydroxyl group must not be exceptionally strongly bound compared to 

the steric effect experienced. Between samarium and dysprosium a marked 

increase in is seen for DHDMB contrasting with the behavior of the 

other two acids. This signals a signif icant increase in the bonding of 

the 3-hydroxyl group, and stands in opposit ion to the trend established 

in which the DHMP Kg values were greater than those observed for DHMB. 

I t  is noted that the K^/Kg ratio for DHDMB steadily decreases in this 

region while steadily increases, indicating a growing similarity in 

bonding between the f irst complexed l igand and the second. This relation

ship is reiterated by the coincident posit ions of the Kj curve minimum 

and the curve maximum at dysprosium. These factors are ful ly accounted 

for by a gradual change from tr identate to a "3-hydroxylbidentate" 

behavior which f inds i ts most favorable radius at dysprosium. 

I f  the second coordinated DHDMB l igand were to remain complexed in 

a "3-hydroxyl bidentate" fashion throughout the rest of the lanthanide 

series, one would expect a monotonie increase in values corresponding 

to the increased polarizing power of the lanthanide ion result ing from the 

successive contraction in cationic radius. The observed results show a 

decrease in K„ from a maximum at dysprosium to a minimum at thulium, and 
z 

a subsequent increase through lutetium. This might be viewed as a second 

transit ion in coordination, result ing from the increased steric hindrance 

caused by the shrinking lanthanide ion radius. I f  this transit ion was 

from a "3-hydroxyl bidentate" coordination mode to a "2-hydroxyl bidentate" 
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mode, one would expect a decrease in value with increasing B-methyl 

substitution due to an adverse steric effect of this now uncoordinated 

part of the l igand. Scrutiny of Figure 10 reveals that this is indeed 

the case in the region from thulium to lutetium where the trend in 

values is clearly DHMP > DHMB > DHDMB. 

Finally, i t  is interesting to note the continuing "abnormal" trend 

in the acid dissociation constants of the dihydroxyacids in Table 3« 

Table 3. Acid dissociation constants at 25°C. I  = 0.1 (unless otherwise 
i  ndi cated). 

Acid K 
a 

Ref. 

2.3"dihydroxypropanoic (0.2 M) 3. 02 X io"4 «5 

2,3-d i  hydFoxy-2.-methy.l propanoic 2. 65 X 10-" 75 

2,3-dihydroxy-2-methy1butano i  c 3- 06 X l o " ^  75 

2,3-dihydroxy-2,3-dimethylbutanoi c 4. 10 X  10-" this work 

The inductive effect of methyl substitution at the alpha posit ion produces 

the expected decrease in acid strength of 2,3-dihydroxypropanoic acid 

(glyceric acid) compared with that of DHMP. The subsequent acids, how

ever, show a str iking and unexpected increase in with increased 

B-methyl substitution. (DHMP < DHMB < DHDMB) This trend may reflect a 

combination of two phenomena. First, the increased substitution of the 

l igand may increase the propensity for disruption of the carboxylate H-0 

bond by a steric interaction (coll ision). Secondly, the increased electron 

donating abil i ty of the hydroxy 1 groups may effectively draw the proton 
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away from the carboxylase function whereupon i t  can more easily solvated 

by water molecules. 

-  '^^Eu DHDMB Cation-Exchange Elutions 

The chromatograms obtained using eluents of 0.4 M DHDMB at pH's of 

3.49 and 3.97 are shown in Figures 11 and 12. While the chromatographic 

and counting techniques are quite successful, the elution order observed 

for the Am-Eu pair was disappointing. I t  had been hoped that DHDMB would 

elute americium before europium and thus show some capacity for separating 

americium from both the l ight and middle lanthanides. This is not the 

case. I f  i t  is assumed that the elution is controlled by the formation 

of a 3:1 DHDMB-metal species, the observed separation factors of 1.4 and 

1.7 would indicate a 3^ value for americium which is intermediate between 

that of samarium and europium. From this posit ion one may conclude that 

while the radius sensit ive aspects of DHDMB provide a lanthanide stabil i ty 

maximum in the desired region, the l igand does not enhance the americium 

complex stabil i ty enough to surpass the stabil i ty observed with cations 

in the mid-lanthanon range. 
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Figure 11. Cation-exchange elution of a Eu -  Am mixture by 

DHDMB solution, pH = 3.49. 
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PART I I .  THE CATION-EXCHANGE SEPARATION OF AMERICiUM FROM THE TRI VALENT 
LANTHANIDES BY THE USE OF 2,2'-DIAM I  NODIETHYLETHER-N,N,N',N'-
TETRAACETIC ACID 
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INTRODUCTION 

The introductory part of this dissertation included a discussion of 

the anomalous lanthanide stabil i ty sequence observed for DTPA, and i ts 

uti l i ty in An-Ln separation schemes. A careful survey of the l i terature 

revealed that another aminopolycarboxylate existed which also exhibited 

i ts maximum lanthanide stabil i ty constant in the mid-lanthanon range. 

During their investigations into new chelating agents for use in 

separating the individual rare-earths, Spedding and Powell (86) reported 

the lanthanide elution sequence of 2, 2'-diaminodiethylether-N,N,N',N'-

tetraacetic acid (EEDTA) to be: Tb, Dy, (Sm, Er, Gd, Ho), Tm, Yb, Lu, 

Y, Nd, Pr, Ce, La, and noted the similarity of this elution sequence to 

that of DTPA. Later Mackey, Mil ler, and Powell (87) observed that this 

complexone attained i ts maximum stabil i ty constant value at Eu and Tb. 

Surprisingly, no record of any An-Ln separation technique which incor

porated this l igand could be found. This part of the dissertation reports 

the results of several tracer-level cation-exchange experiments, which 

were performed to determine the feasibil i ty of An-Ln separations employing 

EEDTA. 
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EXPERIMENTAL 

2,2'-Diaminodiethylether-N,N,N'N'-Tetraacetic Acid 

Although previously test marketed under the trade name CHEL ME, EEDTA 

is no longer commercially available and as a result, a method for i ts 

synthesis was developed, based on that used by Yashunskii et al. (88). 

The f irst step of the EEDTA synthesis, concerns the production of the 

diphthalmide derivative of the commercially available 2,2'-dichlorodiethy1 

ether (Aldrich): 

Cl-CHg-CHg-O-CHg-CHg-Cl + 2CgH^02NK 

CgH^OgN-CHg-CHg-O-CHg-NOgH^Cg. 

This reaction was accomplished by heating a mixture of 143 g of 

2,2'-dichlorodethy1 ether and 3^5 g of potassium phthalimide for 10 hours. 

The temperature was maintained at 140-150°C by means of a mineral oi l  

bath, and the thick slurry was vigorously stirred. Five 2-ml al iquots 

of diethylamine were added at two-hour intervals to catalyze the reaction. 

After this period, the mixture was al lowed to cool and the result ing solid 

was refluxed for one hour with 1.5 1 of disti l led water. The remaining 

precipitate was f i l tered, washed with water, and air dried. This procedure 

yielded 333 g of the yellow diphthalimide derivative which melted at 

152-156°C. 

In the second phase of the EEDTA synthesis the diphthalimide derivative 

was decomposed with hydrazine and treated with HCL, to produce the 2, 2'-

diami nodi ethylether di hydrochlori de: 

[CgH^OgN-CHg-CHgjg-O NHg-NHg HCl^ [HCl-NHg-CHg-CHglg-O 
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Three hundred grams of the diphthalimide was slurried in 1.5 1 of 95% 

ethanol, and treated with 53 9 of anhydrous hydrazine. This mixture was 

then refluxed for three hours, cooled to room temperature, treated with 

275 ml of concentrated HCl, and cooled to 0°C. The precipitate which 

formed was f i l tered, washed with cold ethanol and discarded. The ethanol 

fractions were then combined and evaporated. A small amount of 

extraneous precipitate formed rapidly and was f i l tered out. The remaining 

alcoholic solution was evaporated to a thick syrup and di luted with 250 ml 

of methanol. The addit ion of diethyl ether to this solution precipitated 

the desired 2, 2'-diaminodiethylether dihydrochloride without entraining 

any of the yellow color present in the methanol solution. One hundred 

and eighteen grams of the white, crystall ine dihydrochloride which melted 

at 225~230°C were obtained in this fashion. 

In the f inal step of the synthesis, the dihydrochloride adduct was 

neutralized to the free diamine and condensed with four moles of 

chloroacetic acid to produce the EEDTA: 

[HCl'NHg-CHg-CHgJg-O + A^l-CHg-COOH 

HOOC-CH ^CH--COOH 
NaOH ^ N-CH -CH -0-CH--CH -N 

HOOC-CHg ^ ^ ^ ^^THg-COOH 

Ninety grams of the dihydrochloride were dissolved in 35 ml of water, 

cooled in an ice bath, and neutralized with 30% NaOH to a pH of 9. 

Likewise 270 g of chloroacetic acid (Aldrich) were dissolved in 250 ml 

of water, cooled, and neutralized to a pH of 5. These solutions were 

combined in a three-l i ter f lask and maintained at 40°C. The pH of the 
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reaction mixture was monitored and 30% NaOH was added as needed to obtain 

a pH between 10 and 11. After 48 hours no further change in the pH was 

noted (310 ml of base added), the solution was di luted to 4 1, and loaded 

on three (2" x 4') hydrogen-form cation-exchange columns (Dowex 50). 

As the mixture was loaded and washed with water, an easily distinguishable 

l ight colored band of EEDTA formed immediately ahead of the sodium band. 

The desired EEDTA product was obtained by displacing the complexone from 

the system with 0.2 NH^OH. The result ing samples were t i trated with 

base, and those containing acid fractions were evaporated, yielding 168 g 

of EEDTA-2H20. Heating at 108°C overnight produced the anhydrous EEDTA. 

Elemental analysis and equivalent weight determination shown in Table 4 

confirmed the high purity of the product. 

Table 4. EEDTA analyses. 

C% H% N% 

EEDTA-2H„0 

calculated 38.72 6.45 7.53 

found 38.73 6.62 7.60 

equivalent weight 

calculated 372.33 

found 377.18 

EEDTA 

calculated 42.86 6.00 8.33 

found 43.04 6.11 8.31 

equivalent weight 

calculated 336.30 

found 334.09 
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Cat ion-Exchange Elut ion Experiments 

^^^Eu, and solutions 

The ^^^Am and ^^^Eu tracer solutions described in Part I  were used 

again for the EEDTA experiments. The ^^^Tb (t^ = 72 d) stock solution 

was made by di lution of a 250 pi al iquot of the 0.47 yCi/ml '^^TbCl^ 

solution purchased from New England Nuclear and received on 10/22/79. 

The result ing 10-ml stock solution had a specif ic activity of 11.7 pCi/ml, 

Periodically, addit ional tracer was added to the stock solution to main

tain a convenient activity. All of the original ^^^TbCl^ has now been 

used in this fashion. 

EEDTA eluent solutions 

The EEDTA eluent solutions were prepared by dissolution of weighed 

portions of EEDTA and suff icient NH^CIO^ to produce solutions 0.1 in 

the perchlorate salt. The addit ion of the salt insured an approximately 

constant ionic strength. The pH of the eluents was adjusted to the 

desired value with concentrated NH^OH. The best results were obtained 

with a 0.02 14 EEDTA solution at a pH of 3.06. 

Chromatographic techniques 

The column preparation and injection techniques used were analogous 

to those outl ined for the DHDMB ion-exchange experiments in Part I .  Only 

two minor changes were required. The volume of tracer injected was 

increased from 10 to 40 pi, to provide suff icient count rates for each 

isotope in the tert iary mixture. The eluent f low rate was also slowed 

from 3 to 2 drops/min to allow for the slower exchange kinetics of EEDTA. 
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Counting procedures 

Init ial EEDTA ion-exchange experiments employed only Am and Eu, and 

were counted by the l iquid scinti l lat ion technique described previously. 

An attempt was made to expand the technique to permit the simultaneous 

counting of Am, Eu, and Tb. Unfortunately, the substantial overlap of 

the '^^Tb scinti l lat ion spectrum with that of the other isotopes, depicted 

in Figure 13» rendered the l iquid scinti l lat ion counting method 

unworkable. For this reason, the ion-exchange experiments involving 

tert iary mixtures were counted by gamma spectroscopy. The Ge-Li detector 

and Canberra mult ichannel analyzer, kindly provided by Mr. Ken Malaby, 

were used to simultaneously count Eu, Am, and Tb by selecting the 

fol lowing discrete gamma energies: 

241 
Am — 59.5 Kev 

— 105.3 Kev 

^^°Tb — 298.6 Kev. 

Ten-minute sample counting t imes proved suff icient to provide rel iable 

results. In order to minimize the number of samples to be counted in this 

fashion, al l  samples collected were f irst counted by the l iquid 

scinti l lat ion technique. This practice eliminated the necessity of gamma 

counting samples with l i t t le or no activity. The combination of these 

counting techniques provided a quick and accurate method for the simulta

neous determination of al l  three isotopes. 
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Figure 13. Liquid scinti l lat ion spectra of '^^Eu, and 
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RESULTS AND DISCUSSION 

Preliminary elution experiments employing Am and Eu were performed 

in which the EEDTA concentration and eluent pH were varied to produce 

acceptable elution volumes. These init ial experiments also indicated 

that indeed, Am eluted before Eu as had been hoped. The equivalence of 

the Tb and Eu formation constants (87), and the observation of Tb as the 

leading lanthanide element in EEDTA elutions (86), caused some concern 

that Am would not be wel1-separated from Tb. In an effort to define 

the relative elution posit ions and separation factors of these three 

elements, an experiment was performed with a tert iary isotope mixture. 

The results of this elution are seen in Figure I4. 

The chromatogram revealed the desired elution order of Am, Tb, and 

Eu; with Tb and Am well-separated. The equivalence of the Tb and Eu 

EEDTA formation constants was confirmed by the coincidence of their 

elution peaks. By employing the Am-Tb separation factor calculated from 

the chromatogram (1.71) and the EEDTA stabil i ty constants reported in 

(87), the separation factor between americium and each of the lanthanides 

was calculated. These appear in Table 5 along with the separation 

factors observed for cation-exchange systems at 70-80°C (53, 56), and 

values calculated from the DTPA stabil i ty constants discussed previously 

(48, 49). The average value measured for with DTPA at 25°C is 

2.35 (49). The values in parentheses are normalized to this value, 

and are thus probably more rel iable than those calculated from the 

absolute magnitude of the Am stabil i ty constant given in (49). 
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Figure lA. Cation-exchange elution of a ^^^Eu - mixture 
using an EEDTA solution. 
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Table 5. a, " for EEDTA and DTPA. 
Ln 

M EEDTA 25° DTPA 25° DTPA 70°-80° 

La 349.14 (1907.75) 2630.26 1202.0 

Cr 71.28 (269.48) 371.54 162.0 

Pr 15.24 (49.04) 67.61 40.74 

Nd 7.46 (14.47) 19.95 13.80 

Pm 6.46 

Sm 2.25 (2.63) 3.63 3.02 

Eu 1.71 (measured 1.78) (2.35) 3 .24 2.04 

Gd 2.59 (1.99) 2.75 2.00 

Tb 1.71 (measured) (1.12) 1.55 

Dy 2.15 (0.870) 1.20 

Ho 2.59 (0.957) 1.32 
less than 

Er 3.57 (1.052) 1.45 1.00 
at 70°C 

Tm 5.16 (1.095) 1.51 

Yb 4.93 (1.385) 1.91 

Lu 6.21 (2.089) 2.88 

As seen in the table EEDTA, l ike DTPA, exhibits excellent separation 

factors between Am and the l ight lanthanides. In the heavy lanthanide 

range EEDTA attains separation factors greater than 2.00 for the entire 

group from Dy -  Lu. This behavior is clearly superior to DTPA which 

achieves a separation factor of this magnitude only at Lu. I t  is clear 
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that by exhibit ing a minimum An-Ln separation factor of 1.71, EEDTA 

promises to be a l igand of great uti l i ty in waste processing. 

In addit ion to the impressive separation factors, EEDTA has other 

attr ibutes which may encourage i ts use. The acid form of EEDTA is quite 

soluble in water, al lowing the use of hydrogen ion as a retaining ion 

in a displacement development cation-exchange system. As evidenced in 

i ts synthesis, EEDTA is protonated and sorbed in the presence of a 

hydrogen-form cation exchanger. This phenomenon wil l  cause the formation 

of a EEDTA band immediately ahead of the Am band in a displacement 

system, and wil l  permit a convenient recovery and recycle of the l igand. 

Finally, the ten thousand-fold decrease in the magnitude of the stabil i ty 

constants of the EEDTA complexes, relative to those of DTPA, should 

translate into improved exchange kinetics for both ion-exchange and 

Talspeak-type extraction methods which could be developed with EEDTA. 
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PART I I I .  THE COORDINATION CHEMISTRY AND CATION ELUTION BEHAVIOR OF THE 
LANTHANIDES, AMER I  CIUM AND YTTRIUM WITH 1,5-DIAMINOPENTANE-
N,N,N',N'-TETRAACETIC ACID 
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INTRODUCTION 

The successful separation of Am from the lanthanides in the EEDTA 

cat ion-exchange experiments prompted an attempt to discover which structural 

properties common to EEDTA and DTPA were responsible for their actinide 

selectivity. I t  was conjectured that the fal l  of the EEDTA and DTPA 

stabil i ty constant values for the heavy lanthanons (Tb or Dy -  Lu) was 

essential to their selectivity, and that this phenomena was related to a 

gradual detachment of some l igand chelating group as the lanthanide radius 

decreased. Two possibil i t ies for the fai l ing chelating group are evident 

in a structural comparison of EEDTA and DTPA. Both l igands consist of two 

terminal iminodiacetate groups connected by a f ive membered chain. I t  is 

possible that this particular chain length between the terminal nitrogen 

atoms is such that the coordination of one of the terminal carboxylate 

groups fai ls due to steric constraints result ing from the decreasing 

lanthanide radius. A second possible explanation of the decreasing heavy 

lanthanide stabil i ty constants would predict a gradual fai lure of the 

coordination of the EEDTA ether-oxygen atom and the corresponding fai lure 

of the DTPA mid-chain nitrogen atom or carboxylate group. The paucity of 

data on other l igands with similar structural features makes i t  impossible 

to decide between these two possibil i t ies at this t ime. In an attempt to 

examine the importance of the mid-chain chelating moeity the 

1,5-diaminopentane-N,N,N',N'-tetraacetic acid (PMDTA) l igand was 

synthesized, i ts cation elution behavior was investigated, and i ts 

lanthanide complex formation constants were determined. 
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EXPERIMENTAL 

1,5~diaminopentane-N,N,N',N'-tetraacetic acid 

The 1,5~dianiînopentane-N,N,N' ,N'-tetraacetic acid was synthesized 

by the condensation of chloroacetic acid and 1,5-diaminopentane (Aldrich) 

in a manner similar to that used in the f inal step of the EEDTA 

synthesis. The diaminopentane start ing material (25 g) was f irst 

dissolved in 100 ml of water. To this solution 115 g of chloroacetic 

acid, which had been dissolved in 100 ml of water, cooled, and neu

tral ized with NaOH, were added. The result ing mixture was warmed to 

40°C on a hot plate, and maintained at a pH of 10 by t imely addit ions of 

10 NaOH. Over a twenty-four hour period, 122 ml of base were added in 

this fashion. 

Previous attempts at the synthesis of PMDTA by Schwarzenbach and 

Ackermann (89) and most recently by Peerce and coworkers (90) have proceeded 

in the manner just described, however, in both cases, the authors were 

unable to iosolate the free acid form of PMDTA in purit ies of greater 

than 80%. Fortunately, cation-exchange techniques analogous to those 

described for EEDTA have now allowed the production of high purity PMDTA 

in good yield. The reaction mixture described above was di luted to 2 1 

and loaded on f ive (1" x 4') Dowex 50, hydrogen-form, cation-exchange 

columns. The result ing HCl and unreacted chloroacetic acid were f lushed 

from the system with disti l led water. As in the case of EEDTA, a l ight-

colored, easily discernible band of PMDTA formed, and was displaced from 

the resin by elution with 0.2 IM NH^CH. The acidic fractions of the 

eluate were collected, evaporated to a hard glass, and recrystal1ized from 
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water. The result ing white powder (59 g) was characterized by equivalent 

weight and C, H, and N analyses, and determined to be PMDTA-H^O. The 

anhydrous PMDTA was obtained by heating the monohydrate overnight at 

108°C. The pertinent analyses are shown in Table 6. 

Table 6. PMDTA analyses. 

C% H% N% 

PMDTA-H„0 

PMDTA 

calculated 44.31 6.88 7-95 

found 44.17 6.99 7-95 

equivalent weight, calculated — 352.39 

found — 352.58 

calculated 46.69 6 . 6 5  8 . 3 8  

found 45.61 6 . 7 8  8 . 1 7  

equivalent weight, calculated — 334.37 

found 335.73 

Cat ion-Exchange Elution Experiments 

The PMDTA elution order and separation factors for ^^^Am, '^^Tb, and 

155 
Eu were determined by employing the chromatographic methods and gamma 

counting techniques developed for EEDTA. The optimum eluent was determined 

to be a 0.04 iM -  0.1 NH^CIO^ PMDTA solution adjusted to a pH of 5.06 

with concentrated NH^OH. 
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PMDTA Anion Protonation Constants 

The PMDTA l igand exhibited two buffer regions, one at high pH 

(9-10), and another at low pH (2-3). The large différence between these 

regions allowed and Pa'f to be determined from a set of solutions 

at high pH, and the and pair to be determined from a set of 

solutions at low pH. Each series of solutions was prepared by the 

combination of al lquots of PMDTA stock solution, standard KOH or HNO^ 

solution, and suff icient KNO^ solution to produce a 0.1 M ionic strength. 

The volume of KNO^ solution needed was calculated by using program 

ALPHA, described in Part I .  The pH^ values of the equil ibrated 

solutions (25.00 ± 0.05°C) were measured in the manner previously 

described, and used in conjunction with program OMEGA to calculate the 

desired values for Op a^, Uy and a^. The basis of the calculation 

method wil l  be described in a subsequent section. Appendix B contains 

the pH^ data and results of program OMEGA. 

Rare Earth-PMDTA Complex Stabil i ty Constants 

The equil ibrium constants for the formation of the ML and MHL 

species were calculated from pH^ measurements l ike those used in the 

study of the DHDMB -  rare earth stabil i ty sequence. Appropriate volumes 

of metal nitrate, PMDTA, KOH, and KNO^ calculated by program BETA were 

combined and equil ibrated at 25.00 ± 0.05°C for at least twelve hours. 

The pH^ measurements were made as described previously with the exception 

of the standardization procedure which was accomplished by using the 

technique employed by Johnson (91). The formation of the MHL species 

complicated the calculation of the stabil i ty constants, and required the 
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development of a new calculation method which was incorporated into the 

computer program HCMPLX. The solution data and a l ist ing of HCMPLX are 

found in Appendix B and C. The mathematical method employed in this 

program wil l  be discussed in the next section. 
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CALCULATIONS 

PMDTA Anion Protonation Constants 

The protonation of the PMDTA anion (L) can be described by the 

fol lowing four equil ibria: 

L + H + HL 

L + 2H + HgL 

L + 3H 2 HgL 

L + 4H + H^L 

The result ing equil ibrium constants are: 

a = tHL] 
1 [H] [L] 

[HgL] 
ot„ = 

2 2 
[H]  ̂ [L] 

[H L] 
a "  

^ [H]3[L] 

IH L] 
«4 = 4 

The pertinent mass balances then become: 

and 

= [H] + [HL] + 2UH2L] + SEHgL] + 4[H^L] 

= [H] + a, [H][L] + 2a2[H]^[L] + SoyCHJ^EL] + 4a^[H]^[L] 

4 N 
- [H] = [L] Z No^CH] 

L^ = [L] + [HL] + [HgL] + [HgL] + [H^L] 
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= [L] + a,[H][L] + a2[H]2[L] +a^[H]^[L] +a^[H]'*[L] 

4 .  
= [L](l + Z a„[H]"). 

1 "  

Division of the mass balances yields: 

4 

- [H] , ^ %tH] 

V" '  ̂ N 
1 "  

Rearrangement gives: 

4 
Z (H^ -  [H] -  NL^) = [H] -

This equation is of the form: 

Y = J,a, + JgOg + JgOg + J^oi^ 

and as such, may be treated by a mult iple l inear regression analogous 

to that described in Part I .  This formulation is implemented in program 

OMEGA, and has been discussed in detail previously (91). 

The l inear regression model is needed only when two or more buffer 

regions of the l igand acid overlap, in the case of PMDTA, the buffer 

regions corresponding to the f irst and second protonations of the anion 
i 

overlap in a high pH region, and the buffer regions result ing from the 

third and fourth protonation of the anion overlap in a low pH region. 

The difference in pH of the two apparent buffer regions requires the 

simultaneous computation of only two protonation constants within each of 

the regions, instead of four. In this fashion the and pair, and 
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the and pair were calculated by uti l izing a two parameter approach 

for data within the respective buffer regions. 

Rare Earth-PMDTA Stabil i ty Constants 

The computation of the rare earth-PMDTA stabil i ty constants was 

complicated by the formation of a protonated complex species, MHL, in 

addit ion to the 1:1 chelate ML .  The equil ibria used to describe this 

system are: 

L + M Î  ML 

HL + M 2 MHL 

The result ing equil ibrium constants are: 

B .  [ML] 
*^1 [M] [L] 

ft _ [MHL] 
"^H ~ [M] [HL] 

The metal mass balance now becomes: 

M^ = [M] + [MHL] + [ML] 

= [M] + e^CM][H][L]a, + g,[M][L] 

i f  

X = M^/[M] 

then 

[L] = (X -  l)/ ie^[H]a^ + 3,) 

The l igand mass balance is: 

L^ = [L] + [HL] + [HgL] + [HgL] + [H^L] + [MHL] + [ML] 
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= [L] + [L] E + [L] B^[M] [H] a, + [L]3, [M] 

= [L]( l  + Z a^[H]^ + a^3^[H] " j f  ^1 T^ 

Final ly, the hydrogen balance is: 

= [h]  +  [h l ]  +  z thg l ]  +  +  4[h^l ]  +  [mhl ]  

- [H] = [L](E Na^[H]N + 3j^[H][M]a^) 

= [L] (Z + 3^[H] ^  a,) 

Previous complexones investigated in this laboratory did not form 

appreciable amounts of a protonated chelate species. This al lowed the 

el imination of the free metal concentrat ion by combination of the metal 

and l igand mass balances. Since no metal containing species occurred in 

the hydrogen mass balance, the free l igand concentrat ion [L] could be 

calculated from the measured hydrogen-ion concentrat ion [H], and the 

predetermined protonation constants With the knowledge of [L] ,  

the combined metal and l igand mass balances could be solved for the 

stabi l i ty constants ( i .e. the DHDMB-rare earth system in Part ! } .  

Unfortunately, the mass balances just derived for the PMDTA system must 

be treated in a dif ferent manner. 

The f i rst step in the solut ion of the PMDTA system requires the 

substi tut ion of the mass balance into the mass balance: 

M 
t  

M 
t  

X 
+ 3 

1 X 

Simpli f icat ion yields a quadratic equation in terms of X: 
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0 = (1 + Z a^[H]'^)X^ 

+ + e,M^ -  1 -  E -  L^é,^[H]a, -  L^g,)X 

+ (-a^3(^[H]M^ -  3^M^) 

This is of the form 

where 

0 = AX^ + BX + C 

A = [1 + E a^EH]*^] 

B = B,3„ + B^a, + B3 

B^ = [a,[H]M^ -  L^[H]a^] 

Bz =  [M^ -  L^]  

B^ = [-E ct^[H]^ -  1] 

C = + C^B, 

= [-a,[H]M^] 

C2 = t-M,] 

Similar substi tut ion of the mass balance into the mass balance 

yields: 

"t - " I: + e,,Ml 

This can be rewrit ten as 1 

0 = (E Na^[H]'^)X^ 

+ -ENa^EH]^ -

-  +B^[H]^a| + B, [H])X 

+ (-3„[H]M^a,) 
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This is of the form: 

where 

0  =  dx^ +  ex  +  f  

d  =  [E 

e  =  +  egg ,  +  e3  

e ,  =  [ thjm^a,  -  +  [h]^aj ]  

eg  =  [ [h]  -  h^]  

E^ = [-E Na^[H]'^] 

F = Fl^H 

Fj = [-[HlM^Oj] 

The unknown free metal concentrat ion term contained in X may now 

be el iminated by equating the solut ions of the two quadratic equations 

just derived. Since X is posit ive, the solut ions to the equations 

-b  ±  (b^ -  4ac)& y  
2a  ~  

and 

-e  ±  (e^  -  4df ) i  _  
2d  

are posit ive. From their definit ions, the terms A and d are posit ive, 

and the terms C and F are negative. I t  fol lows that the terms 

(b^  - 4AC) and (E^ -  4DF) are posit ive, and that (b^  - 4AC)^ > |b |  and 

2 1 
(e  - 4DF) > | e | .  The correct solut ions to be equated must then be: 

-b  +  (b^ -  4ac)*  - e  +  (e^  -  4df )^  
2a  "  2d 
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This can be simpli f ied to: 

0 = -  2CDAF + cfcf + FB^D -  AEFB 

-  CEBD + AE^C 

The substi tut ion of the concentrat ion variables into this equation, and 

the col lect ion of the result ing terms is a lengthy and tedious task and 

wi l l  not be duplicated here. The f inal results of the campaign is an 

equation of the form: 

0 = Rg,3 + + Tg,2 + 

+ V3, + We^ + 

where: 

R = [ACgE^Z -  DCgEgBg] 

S = [Bg^DF, -  AF^EgBg -  DC^EgBg -  DCgE^Bg -  DCgEgB, 

+ ACjEgZ + 2AC2EJE2] 

T = -  DCgEgBg -  DCgBgEg + 

U = [ZC^CgD^ -  2ADC2F, + 2B2B2DF, -  AF^BgEg 

-  AFi^2®3 "  DClEzBs -  DC1B2E3 -  DC2E1B3 

-  DCgEgB, + 2AC,E2E2 + 2AC2E^E^] 

V = [ACgEgZ -  DC2B2E2] =0 

W = [Bg^DF, -  AFBgEg -  DCjBgEg + ACjEgZ] = 0 

X = [A^F^Z -  2ADC|F, + C,^D^ + 2B^B^DFj 

-  AFiE,B, -  AF,E,B, -  DC,E,B, -  DC,E,B, 

+ 2AC,E^E^] 
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Y = [ZB^BgDF, -  AFjE^Bg -  AF^EgB, -  DC^E^Bg 

-  DCjEgB, -  DCgEjB, + ACgE^^ + ZAC^E^Eg] 

Z = [B^^DFj -  ABjEJFJ -  EjB,CjD + AC^E,^] 

The fol lowing relat ionships were also noted and used in HCMPLX; 

B^ = -A 

B, = a,[HlBg 

C, = [HlCg 

Each experimental solut ion of known stoichiometry and pH produces 

a similar third-order bivariant equation in 3^ and Fortunately, an 

eff icient numerical technique has been developed for solving systems of 

equations of this kind (92). This technique is currently avai lable via 

the IMSL software subroutine, ZSYSTM, which is maintained at the 

Iowa State University Computational Center. A computer program, HCMPLX, 

was writ ten which takes al l  combinations of two data points from the 

submitted data, calculates the necessary coeff icients, and solves the 

result ing system of two equations for 3^ and ,  by using ZSYSTM. The 

combined results for al l  pairs of data points are then used to compute 

an average value. 

Only one problem has been encountered with this mathematical 

method. The subroutine ZSYSTM requires an ini t ial  guess of the values 

of and 3^ to begin i ts computation. I f  the ini t ial  guesses are too 
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small ,  ZSYSTM tends to converge to the tr ivial solut ion: 3^ = 0, 

= 0. I t  is therefore advantageous to choose the ini t ial  values given 

to ZSYSTM sl ightly larger than the expected values for 3^ and 3^ to 

prevent convergence to this undesired solut ion. 
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RESULTS AND DISCUSSION 

PMDTA Cation-Exchange Elut ions 

From the onset i t  was apparent that the behavior of the PMDTA l igand 

was remarkably dif ferent than that of EEDTA. Prel iminary ion-exchange 

experiments revealed that elut ions with thirty column volumes of 0.02 M 

PMDTA solut ions at pH's of 3.0 (optimum for EEDTA), 4.0, or 4.8 were 

insuff icient to remove the Am, Eu, and Tb tracers from the resin bed. 

An acceptable chromatogram was obtained only after the PMDTA concentrat ion 

was increased to 0.04 ^ and the pH was increased to 5.07. These more 

severe condit ions foreshadowed signif icant dif ferences in the magnitude 

of the PMDTA and EEDTA protonation and lanthanîde chelate formation 

constants. 

The PMDTA chromatogram depicted in Figure 15 also reveals substantial 

dif ferences in the PMDTA and EEDTA elut ion orders for the lanthanide 

and actinide tracers. Unlike EEDTA which eluted Am well  ahead of a poorly 

separated Eu-Tb mixture, PMDTA eluted Tb f i rst fol lowed by an 

unresolved Am-Eu band. The separation factor calculated from the posit ion 

of the Tb and Am peaks indicated a Tb-Am separation factor of 1.5. The 

relat ive posit ion of these peaks showed that the PMDTA-Ln chelate system 

did not possess a suff icient decl ine in stabi l i ty across the heavy 

lanthanons to al low the elut ion of Am ahead of Tb. I t  was, however, 

unknown as to whether this was indicative of a monotonie increase of the 

PMDTA complex stabi l i t ies across the lanthanons, or simply a displacement 

of the chelate fai lure to a less favorable posit ion in the lanthanide 
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sequence. An investigation of the lanthanide-PMDTA solut ion equil ibr ia 

was undertaken to decide between these possibi l i t ies. 

Protonation and Rare-Earth Stabi l i ty Constants 

The protonation constants necessary for the study of the metal-

l igand interactions were computed from the data in Appendix B. The 

results are displayed in Table 7-

Table 7- Protonation constants for the PMDTA anion. 

a Ref. 98 

10.58  

9.50 

2.7 

2 . 2  

The values for the log of the f i rst and second stepwise protonation 

constant are somewhat di f ferent than those observed by Schwarzenbach and 

Ackermann (98). I t  is unclear whether this dif ference is due to the 

presence of impurit ies inherent in the previous PMDTA synthesis, or 

merely dif ferent standardization techniques. Differences similar in both 

magnitude and direction are found in the values of the f i rst and second 

stepwise protonation constants of hexamethylenediamine-N,N,N',N'-

tetraacetic acid (HMDTA) as determined recently by Brucher et al .  (93), 

C] = 0.157 X 10 2.02% log = 10.20 

A = 0.350 X 10 
20 

[H„L] 

32% log [H][HL] = 9.35 

= 0.180 X 10 23 

% =0.311 X 10 25 

[H L] 

2 .32% THTÏ ÏÇLT" 71 

[H^L] 

2.65% log [H][H^L] "  
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and previously by Schwarzenbach et al.  (9A) and Anderegg (95). The third and 

fourth stepwise protonation constants measured for PMDTA are in complete 

agreement with the values determined previously. 

The values of 3^ and 0^ for each of the tr iposit ive lanthanides 

and yttr ium are shown in Table 8. These values were computed from data 

in Appendix B by use of the computer program HCMPLX. I t  is apparent 

that the stabi l i ty constant sequence for both the protonated and un-

protonated PMDTA-Ln complexes increases continuously across the entire 

family. The complete reversal of the decreasing trend exhibited by the 

DTPA-Ln and EEDTA-Ln chelates in the heavy lanthanon region underscores 

the importance of the mid-chain chelat ing moiety which PMDTA lacks. 

Further comparisons are evident in Figure 16, which displays plots of 

log 3^ versus lanthanide cationic radius for DTPA (48), EEDTA (87), 

HMDTA (93)» diethylenetr iamine-N'-propanoic-N,N',N' ' ,N' '- tetraacetic 

acid (DTPTA) (96), and PMDTA; and the log values for 

N-methyl iminodiacetic acid (Ml DA) (97)• The most str iking feature of 

this graph is the 10^-fold decrease in 3^ value directly attr ibutable to 

the replacement of the ether oxygen atom in EEDTA with a methylene group. 

The stabi l i ty constants of the PMDTA l igand bear l i t t le resemblance to 

those of DTPA and EEDTA, and instead paral lel the values exhibited by 

HMDTA and Ml DA. I t  is evident from this phenomenon that the two 

addit ional f ive-membered chelate r ings formed by the mid-chain chelat ing 

group are essential to the high stabi l i ty and actinide selectivi ty shown 

by EEDTA and DTPA. Unfortunately, i t  is st i l l  impossible to determine 

the exact role played by this group in the decrease in complex stabi l i ty 

displayed in the heavy lanthanides. Molecular models show that chelat ion 
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Table 8. Stabi l i ty constants of rare earth PMDTA chelate species 
(25°; I  =0.1). 

M log Bu ^1 
log 

Y . 663  X 10^ 6.823 . 227  X 10'1 10.36® 

La .123 X 107 6.09 . 910  X 10^ 8 .96  

Ce . 218  X 10^ 6.34 . 321  X lo'o  9.51 

Pr . 282  X 107 6 .45  .510  X 10'° 9.71 

Nd .334 X 107 6 .52  .588  X lo'o  9.77 

Pm 

Sm .462 X 107 6 .66  .  149 X 10' '  10 .17  

Eu .496 X 10  6 .70  .  166  X lo^i 10.22 

Gd .61 1 X 107 6.79 . 232  X 10^1 10.37 

Tb .771 X 107 6.89 .344 X lo ' i  10.53 

Dy . 960  X 107 6 .98  .560  X 10' '  10.75 

Ho .115 X 10® 7.06 . 678  X 10" 10 .83  

Er .137 X 10® 7.14 .106 X 10'^ 11.03 

Tm .172 X 10® 7.24 .154 X 10'2 11.19 

Yb . 207  X 10® 7.32 .213 X 10'2 11.33 

Lu .214 X 10® 7.33 . 231  X lo' z  11 .36  

^Values are estimated to be rel iable to ±.05. 
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DTPTA 
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MIDA (LOG jSg) 

PMDTA 
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IONIC RADIUS (Â) 

Figure 16. Stabi l i ty constants of the lanthanide chelates formed by 
several aminocarboxylates. 
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of the mid-chain group introduces considerable strain in the coordination 

of the imi nodi acetate groups, but present data does not offer conclusive 

evidence as to which group fai ls as the cat ionic radius decreases. 

The l i terature contains only two other ci t ings which offer further 

evidence as to the mode of chelat ion in these l igands. In 1979, Choppin, 

Baisden, and Khan (98) publ ished 'h and NMR spectra for the DTPA 

complexes of La and Lu. They concluded that the middle carboxylate 

group was unbound, Implying heptadentate coordination of the metal cation 

by three nitrogen atoms and an average of four carboxylate groups. 

Unfortunately, i f  one accepts this view, i t  becomes very dif f icult  to 

4 
rat ional ize the 10 - fold increase of 3^ values of DTPA over those of 

EEDTA without invoking the coordination of the f i f th carboxylate group. 

The only other indication of the chelat ion mode of these aminocarboxylates 

appears in the stabi l i ty constants reported for DTPTA (96). This l lgand 

has a structure equivalent to DTPA with one terminal acetate group 

replaced by propanoate. Surprisingly, this minor change reduced the 

stabi l i ty of the lanthanide complexes to a posit ion below that of EEDTA, 

approximately 10^ less than DTPA. In addit ion, the decrease observed 

within the heavy lanthanon region for EEDTA and DTPA seems to be retained 

in DTPTA, although the data in this region are obviously poor. I f  one 

assumes that the decrease In the overal l  magnitude of the DTPTA constants 

is due to the fai lure of the propanoate group to bond, the retention and 

equivalence of the decreasing trend In the heavy lanthanons, might be 

indicative of a gradual fai lure of the mid-chain group to coordinate. At 

present, al l  that is certain is that the mid-chain chelat ing group plays 

an important role in the behavior of these l igands, and that the continued 
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col lect ion of rel iable data for the complexes of DTPTA, and other DTPA 

and EEDTA analogues Is imperative to resolving the chelat ion modes of 

these l igands. 
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CONCLUSIONS 

Summary 

The relat ionships between the lanthanide complex formation 

equil ibr ia and lanthanide-actinide separation applications of three 

radius sensit ive l igands have been studied. The consecutive stepwise 

formation constants of the 1:1, 2:1, and 3:1 chelate species formed by 

the interaction of the DHDMB anion and the tr i  posit ive lanthanides and 

yttr ium were determined potentiometrical ly. The results indicate that 

three dif ferent coordination modes, one tr!dentate and two bidentate, 

are in evidence. 

Tracer level ^^^Am-^^^Eu cation-exchange experiments ut i l iz ing 

DHDMB eluents have indicated that this dihydroxycarboxylate does not 

form a suff iciently strong americium complex to elute that actinide 

ahead of europium. The overal l  stabi l i ty of the americium 3:1 complex 

appears to be intermediate between samarium and europium. 

Cation exchange elut ions of ^^'Am, '^^Eu, and ^^^Tb mixtures with 

EEDTA solut ions prove that the EEDTA l igand is capable of elut ing 

americium ahead of al l  other tr iposit ive lanthanide cations. The minimum 

separation occurs with terbium, where the americium-terbium separation 

factor is 1.71. 

The successful synthesis of PMDTA was accomplished by the use of 

cation-exchange purif icat ion techniques. A new mathematical method was 

developed to calculate the formation constants of the protonated and un-

protonated PMDTA-Ln complexes from potentiometric data. The results for 

both cases display a monotonie increase across the entire lanthanide series. 
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Cation-exchange élut ions of tracer quanti t ies of Am, Eu and Tb 

with PMDTA solut ions revealed that terbium is eluted ahead of both 

americium and europium. This elut ion order i l lustrates that the mid-

chain chelat ing groups of DTPA and EEDTA are necessary to their actinide 

selectivi ty. 

Future Work 

The results reported in this dissertat ion suggest a variety of 

interesting experiments which could be accomplished in the future. The 

dihydroxy acid investigations should be completed by studying the 

lanthanide complex formation equil ibr ia of glyceric acid and 

2,3-dihydroxy-3-methyIbutanoic acid. In addit ion, NMR studies of the 

1:1 lanthanide-dihydroxycarboxylates simi lar to those of Taga et al .  (78) 

might provide definit ive proof of the various coordination modes. 

The study of analogs of EEDTA seems to hold the most excit ing 

future, both in terms of nuclear waste separations and fundamental 

aspects of lanthanide and actinide chemistry. Measurement of the 

lanthanide formation constants and Am-Ln separation factors exhibited 

by the EEDTA analogs in which the ether-oxygen atom has been replaced 

by methylamine or sulfur wi l l  offer a unique opportunity to test the 

extent of covalent interactions in americium complexes. I f  indeed 

actinide covalency is a signif icant factor, one would expect the Am-Ln 

separation factors to increase with these "softer" donors. Comparative 

NMR studies of the EEDTA analogs are also cal led for. 

Final ly, solvent extraction experiments should be performed to 

determine the possible benefi ts of replacing DTPA with EEDTA in the 
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systems described in the Introduction. In addit ion, i f  the methylamine 

EEDTA analog proves to be a successful Ln-An separator, one can imagine 

amine-based solvent extraction systems involving long chain amine EEDTA 

analogs which form organic soluble metal complexes, while retaining their 

actinide selectivi ty. 
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APPENDIX A. SOLUTION DATA FOR THE PROTONATION CONSTANT AND RARE-
EARTH COMPLEX STABILITY CONSTANTS OF DHDMB 
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ALPHA 1 - OHOMB 
BUFFER ACID CGNCENTRATIGN = 0.04864 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 
FINAL VOLUME = 100.000 
METAL CONCENTRAT!0N= 0.00 000 

BUFFER ANION CONC - 0.05110 
KN03 CONCENTRATION = 1.05200 
IONIC STRENGTH = 0.100 
METAL VOLUME = 0.000 

<I ) VBFR VBASE VHCL P(H) NEAR ERROR VOL KN03 
1 1.000 0.000 0.000 3.7430 0.306 0.20 9.450 3.388 

2 2.000 0.000 0.000 3.6220 0.368 -0.01 9.408 3.387 
3 3.000 0.000 0.000 3.5610 0.396 -1.34 9.369 3.377 
4 4.000 0.000 0.000 3.5370 0.415 0.08 9.330 3.388 
5 5.000 0.000 0.000 3.5140 0.426 -0.28 9.292 3.385 
6 10.000 0.000 0.000 3.4680 0.454 —0 .01 9.105 3.387 
7 15.000 0.000 0.000 3.4570 0.464 0.97 8.917 3.395 

8 20.000 0.000 0.000 3.4470 0.470 0.90 8.732 3.394 
9 25.000 0.000 0.000 3.4460 0.473 1.54 8.544 3.400 

10 35.000 0.000 0.000 3.4390 0.477 1.51 8.173 3.399 
(I ) SETA(I ) K( I ) PK<I) 

1 0 .243BE 04 0.4101E-03 3.387 
o 
-t-
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Y - OHDMB 
BUFFER ACID CONCENTRATION = 

ORIGINAL STRONG ACID CONCENTRATION 
FINAL VOLUME = 
METAL CONCENTRATIQN= 

0.04730 
O.00000 

1 0 0 * 0 0 0  
0.10 560 

BUFFER ANION CONC = 0.05069 
KN03 CONCENTRATION = 1.06800 
IONIC STRENGTH = 0.100 
METAL VOLUME = 2 .000  

(I) VBFR VBASE VHCL P(HI NBAR ERROR VOL KN03 
1 2.000 0.000 0.000 3.3530 0.470 -0.22 8.344 
2 3.000 0.000 0.000 3.2860 0.627 0.39 8.380 
3 5.000 0.000 0.000 3.2410 0.866 —0.30 8.412 
4 6.000 0.000 0.000 3.2340 0.966 -0.18 8.414 
S 8.000 0.000 o.ooo 3.2310 1.142 0.56 8.401 
6 10.000 0.000 0.000 3.2380 1.279 —0. 03 8.372 
7 12.000 0.000 0.000 3.2460 1.401 — 0*07 6*330 
8 14.000 0.000 0.000 3.2540 1.510 0.15 8.279 
9 15.000 0.000 0.000 3.2590 1.554 -0.25 8.251 
10 16.000 0.000 0.000 3.2630 1.600 —0. 20 8.221 
11 20.000 0.000 0.000 3.2780 1.759 -0.10 8.090 
12 25.000 0.000 0.000 3.2940 1.916 -0.12 7.906 
13 30.000 0.000 0.000 3.3070 2.040 -0.07 7.707 
14 35.000 0.000 0.000 3.3170 2.152 0.53 7.500 
15 40.000 0.000 0.000 3.3270 2.216 — 0.34 7.284 
16 45.000 0.000 0.000 3.3340 2.294 0.16 7.065 
17 50.000 0.000 0.000 3.3400 2.363 0.62 6.842 

(I) BETAd) K( I J PK( I ) VBETA{I) 
1 0. 1505E 04 0 .1952E-01 1.710 0 .80326E 01 
2 0. 296OE 06 0 .5083E-02 2.294 0 .20397E 04 
3 0. 1517E 08 0 .6646E-03 3.177 0 .21691E 06 

WEIGHTING OPTION USED = - 1  
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CE -  DHDMB 

BUFFER ACID CONCENTRATION - 0-04730 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 
FINAL VOLUME = 100.000 
METAL CONCENTRATION= 0,10539 

BUFFER ANION CONC = 0.05069 
KN03 CONCENTRATION = 1.06600 
IONIC STRENGTH = O.lOO 
METAL VOLUME = 2.000 

(I ) VBFR VBASE VHCL Pf H) NBAR ERROR VOL KN03 

1 1.000 0.000 0.000 3.5420 0.251 0.26 8.271 

2 3.000 0.000 0.000 3.3290 0.549 -0.32 8.343 
3 4.000 0.000 0.000 3.3010 0.657 0.15 8.354 

4 5.0 00 0.000 0.000 3.2890 0.746 -0.05 8.354 

5 6.000 0.000 0.000 3.2840 0.822 — 0.04 8.347 

6 8.000 0.000 0.000 3.2840 0.949 0.03 8.317 

7 10.000 0.000 0.000 3.2900 1.048 -0.38 8.274 

8 12.000 0 .000 0.000 3.2960 1.137 . -0.11 8.220 

9 14.000 0.000 0.000 3.3020 1.215 0.20 8.161 

10 15.000 0 .000 0.000 3.3050 1.250 0.27 8.129 

11 16.000 0.000 0.000 3.3080 1 .233 0.27 8.096 

12 25.000 0.000 0.000 3.3290 1.521 0.59 7.768 

13 30.000 0 .000 0.000 3.3380 1.614 0.15 7.569 

14 35.000 0.000 0.000 3.3460 1 .680 -1.04 7.362 

IS 40.000 0.000 0.000 3.3510 1.764 -0.33 7.152 

(I ) BETA(I) K(I ) PK( I ) VBETACI) 

1 0 .1189E 04 0.6139E-01 1.212 0 .40503E 01 

2 0 .1051E 06 0.1132E-01 1.946 0 .90632E 03 

3 0 .1711E 07 0.8409E-03 3.075 0 .69393E 05 

WEIGHTING OPTION USED = -1 
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PR - DH0M8 
BUFFER ACID CONCENTRATION - 0.04745 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 
FINAL VOLUME = 100.000 
METAL CONCENTRATION= 0.10090 

BUFFER ANION CÛNC = 0.05110 
KN03 CONCENTRATION = 1.06800 
IONIC STRENGTH = 0.100 
METAL VOLUME = 2.000 

( n VBFR VBASE VHCL P(H) NBAR ERROR VOL KN03 

1 3.000 0.000 0.000 3.2980 0.638 0.21 8.422 

2 4.000 0 .000 0.000 3.2740 0.755 0.21 8.433 
3 5.000 0.000 0.000 3.2660 0.848 -0.27 8.434 
4 6.000 o .boo 0. 000 3.2640 0.930 -0.23 8.426 

5 3. 000 0.000 0.000 3.2690 1.062 — 0 .18 8.393 
6 10.000 0.000 0.000 3.2780 1.167 -0.23 8.346 
7 12.000 0 .000 0.000 3.2870 1.257 -0.09 8.289 

8 14.000 0.000 0.000 3.2950 1.336 0.28 8.226 
9 15.000 0.000 0.000 3.3000 1.363 -0.30 8.192 

10 16.000 0.000 0.000 3.3030 1.401 0. 19 8. 158 

11 18.000 0.000 0.000 3.3090 1.468 0.85 8.086 

12 20.000 0.000 0.000 3.3150 1.524 1.06 8.01 1 

13 30.000 0 .000 O .000 3.3390 1.711 0. 19 7.606 

14 35.000 0.000 0.000 3.3480 1.766 -1.00 7.390 

15 40.000 0.000 0.000 3.3550 1.814 -1.83 7.171 
(I ) BETAd > K( I ) PK( I ) VBETAd j 

1 0 .1715E 04 0.7456E— 01 1.128 0 .16767E 02 
2 0 .2171E 06 0.7901E-02 2.102 0 .25994E 04 
3 0 .291 IE 07 0.5831E-03 3.234 0 .23725E 06 

WEIGHTING OPTION USED = -1 
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NO - OHOMBA 
BUFFER AGIO CONCENTRATION = 0.04745 BUFFER ANION CONC = 0.05110 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 KN03 CONCENTRATION = 1.06800 
FINAL VOLUME = 100.000 IONIC STRENGTH = 0.100 

METAL CONCENTRATION: 0.10020 METAL VOLUME = 2.000 
(I ) VBFR VBASE VHCL P(H) NBAR ERROR VOL KN03 

1 2.000 0.000 0.000 3.3250 0.540 —0.06 8.425 
2 3.000 0.000 0.000 3.2670 0.701 0.27 8.457 
3 4.QOO O.OOO 0.000 3.2460 0.823 0.02 8.47 0 
4 6.000 0 .000 0.000 3.2410 1 .006 -0.34 8.464 
5 8.000 0.000 0.000 3.2500 1.144 -0.37 8.432 
6 lO.OOO O.OOO 0.000 3.2610 1.257 —0.10 8.385 
7 12.000 0.000 0.000 3.2720 1.351 0.03 8.329 
8 14.000 0.000 0.000 3.2810 1.439 0.67 8.267 
9 15.000 0.000 0.000 3.2860 1.473 0.50 8.233 
10 16.000 0.000 0.000 3.2910 1.503 0.16 8.198 
11 18.000 0.000 0.000 3.2990 1.565 0.15 8. 127 
12 20.COO O.OOO 0. 000 3.3060 1.622 0.18 8.052 
13 25.000 0.000 0.000 3.3210 1.733 -0.24 7.854 
14 30.000 0.000 0.000 3.3320 1.829 -0.23 7.647 
15 35.000 0 .000 0.000 3.3420 1.885 -1.49 7.431 

(11 BETAfI) K(I ) PK( I ) VBETAd ) 
1 0 .2354E 04 0.4757E-01 1.323 0 .14904E 02 

2 0 .3748E 06 0.6281E-02 2.202 0 .37094E 04 
3 0 .7879E 07 0.4248E-03 3.372 0 .35420E 06 

WEIGHTING OPTION USED = -1 
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SM - OHDMB 
BUFFER ACID CONCENTRATION = 0.04864 BUFFER ANION CONC = 0.05110 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 KNQ3 CONCENTRATION = 1.05200 
FINAL VOLUME = 100.000 IONIC STRENGTH = 0.100 
METAL CONCENTRATION: 0.10060 METAL VOLUME = 2.000 
( I ) VBFR VBASE VHCL P(H) NBAR ERROR VOL KN03 
1 1.000 0 .000 0.000 3.4490 0.356 0.61 8.501 
2 2*000 0.000 0.000 3.2770 0.599 -0.35 8.579 
3 5.000 0.000 0.000 3.1890 1.029 —0.36 8.643 
4 7.000 0 .000 0.000 3.1960 1.208 -0.03 8.627 
5 8.000 0.000 0.000 3.2030 1.281 0.04 8.610 
6 11.000 0.000 0.000 3.2260 1.458 0.36 8.538 
7 13.000 0 .000 0.000 3.2420 1 .540 — 0. 24 8.477 
a 14.000 0.000 0.000 3.2460 1.596 0.97 8.445 
9 16.000 0.000 0.000 3.2600 1.654 0.09 8.374 
10 19.000 0.000 0.000 3.2770 1.727 — 0. 86 8.259 
11 20.000 0.000 0.000 3.2790 1.775 0.54 8.221 
12 25.000 0.000 0.000 3.2980 1.880 0.28 8.015 
13 35.000 0.000 0.000 3.3240 2.011 -1.05 7.576 
14 40.000 0.000 0.000 3.3320 2.075 -0.74 7.351 
15 45.000 0.000 0.000 3.3390 2.121 -0.97 7.122 

(I ) BETA(I} K( I ) PK(I) VBETA{I) 
1 0 .3284E 04 0.4473E-01 1.349 0 .23623E 02 
2 0 .8881E 06 0.3698E-02 2.432 0 .99262E 04 
3 0 .1986E 08 0.3045E-03 3.516 0 .91115E 06 

WEIGHTING OPTION USED = -I 
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EU - DHOMB 
SUFFER ACID CONCENTRATION = 
ORIGINAL STRONG ACID CONCENTRATION = 
FINAL VOLUME = 
METAL CONCENTRATION: 
(I) VBFR VBASE VHCL 

1  2 .000  0 .000  0 .000  

2 3.000 0.000 0.000 
3 4.000 0.000 0.000 
4 5.000 0.000 0.000 

5 6.000 0.000 0.000 
6 8.000 0.000 0.000 
7 10.000 0.000 o.ooo 

8 12.000 0.000 0.000 
9 14.000 0.000 0.000 
10 15.000 0.000 0.000 
11 16.000 0.000 0.000 

12 18.000 0.000 0.000 
13 20.000 0.000 0.000 
14 25.000 0.000 0.000 
15 30.000 0.000 0.000 
16 35.000 0.000 0.000 
17 40.000 0.000 0.000 

(I) BETA(I) K(I) 
1 0.3112E 04 0.1808E-01 
2 0.8e87E 06 0.3501E-02 
3 0.4916E 08 0.3214E-03 

0.04730 BUFFER ANION CONC = 0.05069 
0.00000 KN03 CONCENTRATION = 1.06800 
100*000 IONIC STRENGTH = 0.100 
0.10104 METAL VOLUME = 2.000 
P(H) NBAR ERROR VOL KN03 
3.2870 0.588 0.05 8.442 
3.2240 0.769 -0.30 8.484 
3.1980 0.914 0.05 8.505 
3.1890 1.036 0.28 8.513 
3.1890 1.138 0.16 8.513 
3.1990 1.308 -0.07 8.494 
3.2120 1.451 0.13 8.457 
3.2270 1.563 -0.35 8.409 
3.2390 1.670 0.02 8.351 
3.2460 1.709 -0.43 8.320 
3.2510 1.756 -0.12 8.288 
3.2610 1.838 0.13 8.219 
3.2710 1.901 -0.17 8.146 
3.2900 2.048 0.13 7.952 

3.3050 2.160 0.25 7.746 
3.3170 2.249 0.29 7.532 
3.3260 2.335 0.97 7.313 
PK(I) VBETAdJ 
1.743 0.17272E 02 
2.456 0.47708E 04 
3.493 0.68387E 06 

WEIGHTING OPTION USED = -1 
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GD - DHDMB 
BUFFER ACID CONCENTRATION = 0.04724 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 
FINAL VOLUME = 100.000 
METAL CONCENTRATIONS 0.08388 

BUFFER ANION CONC = 0.05069 
KN03 CONCENTRATION = 1.06800 
IONIC STRENGTH = 0.100 
METAL VOLUME = 2 .000  

(I ) VBFR VBASE VHCL PtH) NBAR ERROR VOL KN03 

1 1.000 0.000 0.000 3.4940 0.378 -0.08 8.540 
2 3.000 0.000 0.000 3.2700 0.826 — 0. 16 8.629 
3 4.000 0.000 O.OOO 3.2440 0.983 0.32 8.641 
4 5.000 0.000 0.000 3.2350 1.110 0.16 8.642 
5 6.000 0.000 0.000 3.2340 1.217 — 0.14 8.635 
6 8.000 0.000 0.000 3.2400 1.399 0.05 8.602 
7 10.000 0 .000 0.000 3.2520 1.536 — 0. 40 8.554 
8 12.000 0.000 0.000 3.262 0 1 .663 0.31 8.496 

9 14.000 0.000 0.000 3.2740 1.753 -0.22 8.430 
10 15.000 0.000 0.000 3.2790 1.797 -0.19 8.395 
11 16.000 0.300 0.000 3.2840 I .835 -0.30 8.358 

12 18.000 0.000 0.000 3.2920 1.915 0. 17 8.283 
13 20.000 0.000 0.000 3.3000 1 .977 0.10 8.204 
14 30.000 0 .000 0.000 3.3280 2.215 0.59 7.784 
15 35.000 0.000 0.000 3.3380 2.290 0.40 7.563 

(I) 1 BETA(I 1 K( I ) PKt I) VBETA(11 
1 0 •2655E 04 0. 1872E-01 1.728 0 .13280E 02 

2 0 .9174E 06 0.2395E-02 2.538 0 .51542E 04 
3 0 •4902E 08 0.3766E-03 3.424 0 .71740E 06 

WEIGHTING OPTION USED = -1 
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TB - OHOMB 
BUFFER AGIO CONCENTRATION -= 0.04724 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 
FINAL VOLUME = 100.000 
METAL CONCENTRATION: 0.10582 

BUFFER ANION CONC = 0.05069 
KN03 CONCENTRATION = 1.06800 
IONIC STRENGTH = 0.100 
METAL VOLUME = 2.000 

( I ) VBFR VBASE VHCL P(H) NBAR ERROR VOL KN03 
1 3.000 0 .000 0.000 3.2390 0.709 0. 10 8.419 
2 4.000 0.000 0.000 3.2050 0.859 0.15 8.448 
3 5.000 0 .000 0.000 3.1900 0.987 -0.04 8.465 
4 6.000 0 .000 0.000 3.18SO 1.098 -0.21 8.472 
5 8.000 0.000 0.000 3.1890 1.284 -0.20 8.462 
6 10.000 0.000 0.000 3.2000 1.436 0.30 8.431 
7 12.000 0.000 0.000 3.2160 1.549 -0.23 8.385 
8 14.000 0.000 0.000 3.2310 1.643 -0.49 8.329 
9 15.000 0 .000 0.000 3.2360 1 .696 0.28 8.298 
10 16.000 0.000 0.000 3.2430 1.723 0.08 8.265 
11 18.000 0.000 0.000 3.2540 1.81 1 0.56 8.196 
12 20.000 0.000 0.000 3.2650 1 .870 0.46 8.123 
13 30.000 0.000 0.000 3.3040 2.083 0.19 7.718 
14 35.000 0.000 0.000 3.3180 2.140 — 0. 74 7.501 
15 40.000 0.000 0.000 3.3290 2.184 -1.57 7.280 

(I) BETA(I) K( I ) PK(I) VBETAd ) 
1 0 .2018E 04 0.2888E-01 1 .539 0 .27456E 02 
2 0 .7430E 06 0.2717E-02 2.566 0 .56635E 04 
3 0 .2573E 08 0.4954E-03 3.305 0 .81901E 06 

WEIGHTING OPTION USED = -1 
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DY - DHDM3 
BUFFER ACID CONCENTRATION = 0.04724 
ORIGINAL STRONG ACIO CONCENTRATION = 0.00000 
FINAL VOLUME = 100.000 
METAL CONCENTRATION: 0.10220 

BUFFER ANION CONC = 0.05069 
KN03 CONCENTRATION =1.06800 
IONIC STRENGTH = 0.100 
METAL VOLUME = 2.000 

f 1 ) V3FR VBASE VHCL P(H) NEAR ERROR VOL KN03 

1 2.000 0.000 0.000 3.3160 0.541 0.00 8.409 
2 3.000 O.OOO 0.000 3.2440 0.725 0.18 8.454 

3 4.000 0 .000 0.000 3.2110 0.877 -0. 19 8.432 

4 5.000 0.000 0.000 3.1950 1.010 — 0*01 8.497 

5 3.000 0 .000 0.000 3.1930 1.316 -0.02 8.491 

6 10.000 0.000 0.000 3.2050 1.466 —0.06 8.459 
7 12.000 0.000 0.000 3.2190 1.589 0.00 8.411 
8 14.000 0 .000 0.000 3.2330 1.689 0.02 8.354 

9 15.000 0.000 0.000 3.2400 1.731 -0. 13 8.323 

10 16.000 0.000 0. 000 3.2450 1.781 0.47 8.290 

11 18.000 0 .000 0.000 3.2580 1.844 -0.10 8.219 

12 20.000 0.000 0.000 3.2680 1.910 0.14 8.145 

13 25.000 0.000 0.000 3.2900 2.030 -0.19 7.947 

14 30.000 0.000 0.000 3.3060 2.129 —0.06 7.737 

15 35.000 0.000 0.000 3.3190 2.199 — 0.40 7.520 
(I ) BETA(I ) K( I } PK(I ) VBETA(I ) 

1 0 .2003E 04 0.2421E-01 1.616 0 .95942E 01 

2 0 .7792E 06 0.2571E-02 2.590 0 .31434E 04 
3 0 .3219E 08 0.4992E-03 3.302 0 .386T6E 06 

WEIGHTING OPTION USED = -1 
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HO - DHOMB 
BUFFER ACID CONCENTRATION = 0.04745 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 
FINAL VOLUME = 100.000 
METAL CONCENTRATIONS 0.09840 

BUFFER ANION CONC = 0.05110 
KNQ3 CONCENTRATION = 1.06800 
IONIC STRENGTH = O.lOO 
METAL VOLUME = 2.000 

(I ) VBFR VBASE VHCL P(H) NBAR ERROR VOL KN03 

1 2.000 0.000 0.000 3.3220 0.555 0.01 8.447 

2 3.000 0.000 0.000 3.2560 0.734 —0. 34 8.487 

3 4.000 0.000 0.000 3.2240 0.888 0.46 8.509 

4 5.000 0.000 0.000 3.2120 1.013 -0.09 8.520 

5 6.000 0 .000 0.000 3.2070 1.126 0.12 8.521 

6 8.000 0.000 0.000 3.2110 1.312 — 0.06 8.505 

7 10.000 0.000 0.000 3.2210 1.465 0.01 8.470 

8 14.000 0.000 0.000 3.2460 1.692 — 0.54 8.365 

9 15.000 0.000 0.000 3.2510 1.744 -0.25 8.333 

10 16.000 0.000 0.000 3.2560 1.792 — 0. 05 8.300 

11 18.000 0.000 0.000 3.2650 1.881 0=54 8.231 

12 20.000 0.000 0.000 3.2750 1.946 0.15 8.157 

13 25.000 0 .000 0.000 3.2940 2.093 0.35 7.959 

14 30.000 0.000 0.000 3.3090 2.204 0.44 7.749 

15 35.000 0.000 0.000 3.3220 2.273 — 0.36 7.530 

16 40.000 0 .000 0.000 3.3320 2.335 — 0.70 7.306 
(I ) BETA(I) K( I ) PK(I ) VBETAfl) 

1 0.2133E 04 0.1690E-01 1.772 
2 0.6750E 06 0.3160E-02 2.500 
3 0.3995E 08 0.4688E-03 3.329 

0.16465E 02 
0.45922E 04 
0.64121E 06 

WEIGHTING OPTION USED = -1 
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ER - OHDMB 
BUFFER ACIO CONCENTRATION = 
ORIGINAL STRONG ACIO CONCENTRATION 
FINAL VOLUME = 
METAL CONCENTRATIONS 

0.04745 BUFFER ANION CONC = 0.05110 
0.00000 KN03 CONCENTRATION = 1.06800 

100.000 IONIC STRENGTH = 0.100 
0.10546 METAL VOLUME = 2.000 

( I ) VBFR VBASE VHCL P(H) NBAR ERROR VOL KN03 

1 1.000 0.000 0.000 3.4770 0.318 0.02 8.309 

2 2.000 0.000 0.000 3.30 30 0.544 0.01 8.383 
3 3.000 0.000 0.000 3.2370 0.718 -0.27 8.427 
4 4.000 0 .000 0.000 3.2080 0.861 -0. 18 8.452 
5 5.000 0. 000 0.000 3.1940 0.988 0.72 8.463 

6 6.000 0.000 0.000 3.1930 1.089 -0.04 8.467 
7 8.000 0 .000 0.000 3.1990 1 .265 -0.13 8.453 

8 10.000 0.000 0.000 3.2100 1 .413 0.10 8.421 

9 12.000 0*000 0.000 3.2240 1.530 -0.39 8.376 

10 14.000 0.000 0.000 3.2360 1 .637 -0.23 8.322 

11 15.000 0.000 0.000 3.2420 1.684 -0.28 8.292 

12 20.000 0.000 0.000 3.2660 1.892 0.52 8.123 

13 25^000 0.000 0.000 3.2860 2.040 0.56 7.931 

14 30.000 0.000 0.000 3.3030 2. 137 — 0. 30 7.724 

15 35.000 0.000 0.000 3.3150 2.233 0.01 7.51 0 
(I } BETA<I ) K( I ) PKdJ VBETA(I) 

I 0 .2400E 04 0.1807E-01 1.743 0 .13258E 02 

2 0 .6591E 06 0.3642E-02 2.439 0 .54199E 04 

3 0 .3648E 08 0.4166E-03 3.380 0 .73790Ê 06 

WEIGHTING OPTION USED = -1 
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YB - DHOMB 
BUFFER ACID CONCENTRATION = 0.04724 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 
FINAL VOLUME = 100.000 
METAL CONCENTRATION: 0.10 025 

BUFFER ANION CONC = 0.05069 
KN03 CONCENTRATION = 1.06800 
IONIC STRENGTH = 0.100 
METAL VOLUME = 2.000 

(I ) VBFR VBASE VHCL P(HI NBAR ERROR VOL KN03 
1 1.000 0.000 0.000 3.4640 0.347 -0.33 8.375 
2 2.000 0.000 0.000 3.2900 0.589 0.19 8.448 
3 3.000 0 .000 0.000 3.2290 0.766 0.20 8.487 
4 4. 000 0.000 0.000 3.2070 0.903 0.08 8.505 
5 5.000 0.000 0.000 3.2020 1.013 -0.17 8.510 
6 6.000 0.000 0.000 3.2030 1.109 0.20 8.506 
7 8.000 0.000 0.000 3.2180 1.252 -0.55 8.478 
8 10.000 0.000 0.000 3.2330 1.372 -0.23 8.433 
9 12.000 0.000 0.000 3.2470 1.473 0.28 8.377 
10 14.000 0.000 0.000 3.2610 1.550 0.14 8.313 
11 15.000 0 .000 0.000 3.2670 1 .586 0.23 8.279 
12 16.000 0.000 0.000 3.2730 1 .616 0. 13 8.244 
13 20.000 0.000 0.000 3.2920 1.729 0.47 8.094 
14 30.000 0.000 0.000 3.3250 1.898 — 0.36 7.679 
15 35.000 0.000 0.000 3.3360 1.951 — 0.96 7.461 

(I > BETA(I) K( I ) PK( I ) VBETA(I) 
1 0 .3161E 04 0.5978E-01 1 .223 0 .15048E 02 
2 0 .8119E 06 0.3894E-02 2.410 0 .55674E 04 
3 0 .1358E 08 0.3163E-03 3.500 0 .64954E 06 

WEIGHTING OPTION USED = -I 
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LU - DHDM3 
BUFFER AGIO CONCENTRATION = 0.04724 
ORIGINAL STRONG ACID CONCENTRATION = 0.00000 
FINAL VOLUME = 100.000 
METAL CONCENTRATION= 0.10210 

BUFFER ANION CONC = 0.05069 
KN03 CONCENTRATION = 1.06800 
IONIC STRENGTH = 0.100 
METAL VOLUME = 2.000 

(I} VBFR VBASE VHCL P(HJ NBAR ERROR VOL KN03 

1 2.000 0.000 0.000 3.2690 0.608 — 0.07 8.443 

2 3.000 0 .000 0.000 3.2060 0.793 0.27 8.485 
3 4.000 0.000 0.000 3.1850 0.933 — 0.04 8.506 

4 5.000 0.000 0.000 3.1810 1.045 -0.23 8.513 

5 8.000 0.000 0.000 3.2000 1.293 -0.28 8.484 

6 10.000 0.000 0.000 3.2160 1.421 0.51 8.440 

7 12.000 0.000 0.000 3.2350 1.509 -0.22 8.385 

a 14.000 0.000 0.000 3.2490 1.595 0.28 8.322 

9 15.000 0.000 0.000 3.2570 1.623 — 0.24 8.288 

10 16.000 0.000 0.000 3.2630 1.658 -0.07 8.253 

11 18.000 0.000 0.000 3.2740 1.720 0.17 8.179 

12 20.000 0.000 0.000 3.2840 1.771 0.17 8. 103 

13 25.000 0.000 0.000 3:3030 1.884 0.75 7.902 

14 35.000 0 .000 0.000 3.3310 2.001 -0.90 7.471 

15 40.000 0.000 0.000 3.3400 2 . 050 -1.17 7.249 

( I ) BETA ( I ) K{ I } PKU ) VSETAtI} 

1 0 .3788E 04 0.5049E-01 1.297 0 .28287E 02 

2 0 .lllOE 07 0.3413E-02 2.467 0 .83094E 04 

3 0 .2198E 06 0.2640E-03 3.578 0 .9271OE 06 

WEIGHTING OPTION USED = -1 
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APPENDIX B. SOLUTION DATA FOR THE PROTONATION CONSTANTS AND RARE-
EARTH COMPLEX STABILITY CONSTANTS OF PMDTA 
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PMDTA - ALPHA 1,2 
ORIGINAL ACID CONCENTRATION = 0.04881 
ORIGINAL STRONG ACID CONCENTRATION = 0.03890 
METAL CONCENTRATIONS 0.0 
FINAL VOLUME = 200.000 

ORIGINAL BASE CONC = .0.05532 
KN03 CONCENTRATION = 1.06800 
METAL VOLUME = 0.0 
IONIC STRENGTH = 0.100 

f I ) VAC ID VBASE VHCL PCH) NBAR ERROR VOL KN03 
1 5.000 10.500 0.0 9.0020 1.63 -0.1423E 01 17.826 

2 5.000 11.000 0.0 9.1930 1.52 0.3931E-01 17.740 
3 5.000 11.500 0.0 9.3300 1.42 0.3211E 00 17.663 
4 5.000 12.000 0.0 9.4520 1 .31 0.5793E 00 17.584 
5 5.000 12.500 0.0 9.5550 1.21 0.1322E-01 17.510 
6 5.000 13.000 0.0 9.6690 1.11 O.IOOIE 01 17.423 
7 5.000 13.500 0.0 9.7630 1.01 0.4727E 00 17.346 

8 5.000 14.000 0.0 9.8470 0.91 -0.1059E 01 17.274 

9 5.000 14.500 0.0 9.9460 0.82 -0.4152E 00 17.190 
10 5.000 15.000 0.0 10.0400 0.74 -0.5839E-02 17.108 
11 5.000 15.500 0.0 10.1300 0.65 0.2000E 00 17.029 

( I ) BETA(I ) K( I ) PK( I ) VBETAd ) 
1 0 .1573E 11 0.4489E-09 9.348 0.31706E 09 
2 0 .3504E 20 0.6357E-10 10.197 0.46114E 1 8 

WEIGHTING OPTION USED = -1 HTIT = 4 FIRST DATA POINT = 1 
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PMDTA - ALPHA 3, 4 
ORIGINAL ACID CONCENTRATION = 0.04861 
ORIGINAL STRONG ACID CONCENTRATION = 0.03890 
METAL CONCENTRATIONS 0.00000 
FINAL VOLUME = 200.000 

ORIGINAL BASE CONC = 0.05532 
KN03 CONCENTRATION = 1.06800 
METAL VOLUME = 0.000 
IONIC STRENGTH = 0.100 

( 11 VACID VBASE VHCL P(H) NBAR ERROR VOL KN03 
I 5.000 0 .000 10.000 2.4990 0.996 0.2774E 01 18.126 
2 5.000 0.000 9.000 2.5220 0.971 0.3176E 01 18.153 
3 5.000 0.000 8.000 2.5440 0.933 0.2107E 01 18.179 
4 5.000 0.000 7.000 2.5650 0.884-0.4362E 00 18.203 
5 5.000 0.000 6.000 2.5910 0.855-0.2320E 00 18.228 
6 5.000 0.000 5.000 2.6170 0.817-0.9619E 00 18.252 
7 5.000 0.000 4.000 2.6460 0.786-0.6296E 00 18.275 
8 5.000 0.000 3.000 2.6770 0.754-0.7201E-01 18.298 
9 5.000 0.000 2.000 2.7070 0.710-0.14S0E 01 18.319 
10 5.000 0.000 1.000 2.7400 0.668-0.2211E 01 18.340 
11 5.000 0.000 0.000 2.7760 0.627-0.2584E 01 18.360 
12 5.000 1 .000 0.000 2.8350 0.575-0.1281E 01 18.334 
13 5.000 2 .000 0.000 2.9000 0.515-0.8116E 00 18.306 
14 5.000 3.000 0.000 2.9750 0.452-0.4477E-01 18.276 
15 5.000 4.000 0.000 3.0620 0.383 0.4562E-01 18.243 
16 5.000 5.000 0.000 3.1700 0.313 0.1301E 01 18.207 
17 5.000 6.000 0.000 3.3080 0.237 0.2061E 01 18.168 

(I) BETA(I) K(I) PK(I ) VBETAd) 
1 0. 5131E 03 0.57 73E-02 2.239 0.97592E 01 
2 0. 8888E 05 0.1949E-02 2.710 0.20478E 04 

WEIGHTING OPTION USED = -1 HTIT = 2 FIRST DATA POINT = 1 
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PMDTA Stabil i ty Constant Data 

Ligand volume = 5.00 

Ligand concentration = 0.04699 

Base concentration = 0.06059 

Sait concentration = 1.066 

Rare-earth volume = 2.00 

Final volume = 100.00 

'  base PH V sait V base pH V sal 

Yttr i  um concentration = 0.10500 

8.00 4.120 7.75 9.50 5.374 8 . 1 2  

8.50 4.663 7.87 10.00 5 . 6 2 6  8 . 2 3  

9.00 5.082 8.00 10.50 5.865 8 . 3 2  

Lanthanum concentration = 0.10403 

8.00 4.505 7.76 9.50 6.094 8 . 1 3  

8.50 5.373 7 . 8 8  10.00 6.339 8 . 2 7  

9.00 5.792 8.01 10.50 ppt 8 . 3 3  

Cerium concentration = 0.10539 

8.00 4.358 7.74 9.50 5.806 8.12 

8.50 5-148 7.87 10.00 6 . 0 8 7  8.22 

9.00 5.548 8.00 10.50 ppt 8 . 3 2  

Praseodymium concentration = o . i o 7 8 6  

8.00 4 . 2 9 9  7.71 9.50 5 . 6 9 0  8 . 0 9  

8.50 5.030 7.84 10.00 5.948 8.20 

9.00 5.421 7.97 10.50 6.187 8 . 3 0  
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V base pH V salt V base pH V salt 

Neodymium concentration = 0.1002 

8.00 4.222 7 . 8 0  9.50 5.689 8 . 1 7  

8.50 4.992 7.92 10.00 5.944 8 . 2 7  

9 . 0 0  5.410 8 . 0 5  10.50 6.219 8 . 3 6  

Samari urn concentration = 0. 10726 

8.00 4.201 7.72 9.50 5.489 8 . 0 9  

8.50 4.818 7.85 10.00 5.723 8.21 

9 . 0 0  5.206 7.98 1 0 . 5 0  5.967 8 . 3 0  

Europium concentration = 0. 13174 

8.00 4.136 7.46 9.50 5.324 7.85 

8.50 4.694 7.58 10.00 5.562 7.97 

9 . 0 0  5.050 7.72 10.50 5.773 8.08 

Gadolinium concentration = 0 .10218 

8.00 4.167 7.78 9.50 5.418 8.15 

8.50 4.719 7.90 10.00 5.656 8 . 2 5  

9 . 0 0  5.117 8 . 0 3  10.50 5.891 8.35 

Terbium concentration = 0. 10582 

8.00 4.114 7.74 9.50 5.290 8.11 

8.50 4 . 6 3 6  7 . 8 6  10.00 5.539 8.22 

9 . 0 0  4.996 7.99 10.50 5.776 8 . 3 2  

Dysprosium concentration = 0.1022 

8.00 4.106 7.78 9.50 5.212 8.15 

8.50 4.579 7.90 10.00 5.458 8 . 2 5  

9 . 0 0  4.944 8 . 0 3  10.50 5.722 8 . 3 5  
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V base pH V salt V base pH V salt 

Holmium concentration = 0.10497 

9.00 4.838 8.00 9-75 5.261 8.18 

9.25 4.999 8.06 10.00 5-383 8.23 

9.50 5.108 8.12 10.25 5.518 8.28 

Erbium concentration = 0.10546 

9.00 4.745 7.99 9.75 5-172 8.17 

9.25 4.906 8.05 10.00 5.296 8.22 

9.50 5.041 8.11 10.25 5-420 8.27 

Thulium concentration = 0.10459 

9.00 4.676 8.00 9.75 5-099 8.18 

9.25 4.820 8.06 10.00 5.220 8.23 

9.50 4.945 8.12 10.25 5-356 8.28 

Ytterbium concentration = 0.10025 

9 . 0 0  4.631 8 . 0 5  9.75 5.031 8 . 2 2  

9.25 4 . 7 8 2  8 . 1 1  1 0 . 0 0  5.178 8 . 2 7  

9.50 4 . 9 2 0  8 . 1 7  10.25 5.311 8 . 3 2  

Luteti um concentration = 

9 . 0 0  4 . 6 0 9  8 . 0 3  9.75 5.010 8 . 2 0  

9.25 4.765 8 . 0 9  1 0 . 0 0  5.157 8 . 2 5  

9.50 4.879 8 . 1 5  10.25 5.279 8 . 3 0  
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APPENDIX C. COMPUTER PROGRAM HCMPLX 
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1 
2 
3 

4 

5 

c PROGRAM HCMPLX 
c THIS PROGRAM CALCULATES BMHLANO BML FOR METAL ION AND , 
c THE DATA DECK CONSISTS OF 
C CARD 1 TITLE 
c CARD2 
c COL 1 F10.5 LIGCON 
c COL I 1 FID.5 GASCON 
c COL 21 F10.5 METCON 
c COL 31 F10.5 SLTCON 
c COL 41 FIG.5 FINVOL 
c COL 51 F10.5 lONSTR 
c CARD 3 
c COL 1 12 N NUMBER OF DATA POINTS 

c COL 11 E10.5 ALPHA(l) 
c COL 21 E10.5 ALPHA(2) 

c COL 31 E10.5 ALPHA(3) 

c COL 41 E10.5 ALPHA(4) 
c COL 51 E10.5 TBETA(1) BETA(MHL) 
c COL 61 E10.5 TBETA(2) BETAt ML) 

c CARD 4 THROUGH N+3 
c COL 1 F10.5 LIGVOL(N) 

c COL 11 F10 . 5 BASVOL(N) 

c COL 21 F10.5 METVOL(N) 

c COL 31 F10.5 PHCN) 
IMPLICIT REAL* 8 (A--H.O-Z) .INTEGER* I-N) 

AGIOS OF THfc FORM H41. 

NJ 

RE AL *8 IONSTR.LIGCON.LIGVOL•METCCN•METVOL,MTOT 
01MENSION R( 1 0 ).S( 1 0 )*TflO)*U( 1 0 I .V(iO).W( 1 0 }«X( 1 0 )«y(lO),Z(10)»AL 
1PHA(4),TBETA(2).PAR(18),WA(20),TITLE{201sLIGVOLClO},8ASVOL<10).MET 
2VOL(10).PH(10) 

EXTERNAL AUX 
TRAPS ALLOWS THE PROGRAM TO CONTINUE AFTER AN EXPOTENTIAL UNDERFLOW 

CALL TRAPS(0.0.32767.0.0) 
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6 
7 
8 
9 

10 

11 
12 

13 
14 
15 
16 
17 
18 

19 
20 
21 

22 
23 
24 
25 
26 
27 

28 
29 
30 

400 REAO(5»LO#CNO=2000)(TITLE(I).1=1.20) 
READ(5.20)LÎGCON.BASCON.HETCON.SLTCON.FINVOL.LONSTR 
READ(5.30)N.ALPHA(1).ALPHA(2) *ALPHA(3).ALPHA!4 I,TBETA(1).TBEtA(2) 
READ(5.40) (LLGVOL( I ) ,BASVOL( I ) .METVOLD ) .PH( I) » 1=1 .N) 
WRITE(6.50) 
WRITE(6,10)CTITLE(I).1=1.20) 
WRITE<6,60)LIGCCN,BASCCN,METCON 
WRITE(6.70>SLTCON.FINVOL.IONSTR 
WRITE(6.80)(I.ALPHA(I),1=1.4) 
WRITE(6.90)TBETA(1) 
WRITE(6.100)TBETA12) 
WRITE(6.110) 
WRITEC6.120) ( I .LIGVOL( 1 ) .BASVOL( I) .METVOLd ) .PH( I) . 1 = 1 .N) 

C THIS DO LOOP CALCULATES COEFFICIENTS A-F 
DO 500 1=1.N 
H=10.0**(-PH(I)) 
MTOT=METCON*METVOL{I)/FINVOL 
ATOT=LIGCON*LIGVOL(I)/FINVOL 
HTOT=(LIGCON*4.0*LIGVOL(I)/FINVOL)-(BASCON*BASVOL(I)/FINVOL) 
A=1.0+ALPHA(1)*H+ALPHA(2)*H**2.0+ALPHA(3)*H**3.0+ALPHA(4)*H*$4.0 
B2=(MTOT-ATOT) 
C2=(-MT0T) 
0=ALPHA{1)*H+2.0*ALPHA(2)*H**2.0+3.0*ALPHA(3)*H**3.0+4.0*ALPHA(4)* 
1H**4.0 
E1=ALPHA(1)*H*(MT0T-HT0T+H) 
E2=H-HTCT 
B3=-A 
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52 
53 
54 
55 
56 
57 
58 
59 
50 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

80 
81 

PAR{1)=R(I) 
PAR(2)=S(I) 

PAR<3)=T(I) 
PAR(4)=U(I) 
PARC 5)=V(II 
PAR(6)=W{IJ 
PARI7)=X{I) 
PAR(8)=Y(I) 
PAR{9)=2(1) 
PAR(10)=R(J) 
PAR(ll)=StJ) 
PAR(12)=T(J) 
PARC13)=U{J) 
PAR(14)=V(J) 
PAR(15)=W(J) 
PARC 16)=XC J) 
PARC17) = YC J) 
PAR{18)=2(J) 
EPS=1.0D-7 0 
NSIG=4 
K=2 
1TMAX=20 
IER=0 
CALL ZSY ST M C AUX.EPS » NSI G.K.T8ETA.ITMAX,WA,PAR.1ER) 
WR1TEC6.140)ITMAX 
WRITEC6.150)1ER 
WRITEC6.160)TBETAC1) 
WRITEC6.17 0)TBETAC2) 
TBETAClJ=FSETAl 
TBETA(2)=FBETA2 

900 CONTINUE 
1000 CONTINUE 

GO TO 400 
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85 
86 
87 
88 

89 
90 

91 
92 
93 
94 
95 

96 
97 
98 
99 

100 
101 
102 

103 

2000 
1 0  
20 
30 

40 
50 

60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
170 
160 

STOP 
F0RMAT(20A4). 
FORMATtôFlO. é )  
F0RMAT(I2.8X,6D10.4) 
FORMAT(4F10.5) 
FORMAT(•1****************************** 
1************************) 

PROGRAM HCMPL.X ******* 

FORMAT( 
FORMATC 
FORMAT( 
FORMAT( 
FORMAT( 

FORMAT{ 
FORMAT 
FORMAT( 
FORMAT( 
FORMAT( 
FORMAT( 
FORMAT( 
END 

METCON = •,Fi0.5) 
lONSTR = •,F10.5) 

LIGCCN = '.FIO.S,* BASCCN = ',F10.5,' 
SLTCON = '.F10.5,' FINVOL = '.F10.5.' 
ALPHA '.12,' = ••010.4) 
TRIAL BETA MHL = •,028.16) 
TRIAL BETA ML = •,028.16) 

(I)*,T15.«LIGVOL*,T25,'BASVOL',T35.•METVOL•,T45,'PH') 
(I2»T10,F10.4,T20,F10.4,T30,F10.4,T40,F10.4) 
POINTS USED ARE '.12,' AND ',12) 
NUMBER CF ITERATIONS = 
1ER = •,13) 
BML = » *D28*16) 
BMHL = •,028.16) 

13) 
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DOUBLE PRECISION FUNCTION AUX (TBETA,K.PAR) 
INTEGER K 
REAL*8 TBErA{2).PAR{18) 

TRAPS ALLOWS THE PROGRAM TO CONTINUE AFTER AN EXPOTENTIAL UNDERFLOW 
CALL TRAPSCO.O.32767.0»0) 
GO TO (10,20)«K 

10 AUX=PAR(1)*TBETA(2)**3+PAR(2)*(TBETA(2)**2)*TBETA(X)+PAR(3)*T8ETA( 
12)**2+PAR(4)*TBETA(2)*TBETA(1)+PAR(5)*T8ETA(2)+PAR< 6)»TBETA{1)+PAR 
3(7)*T8ETA(i)**2+PAR(8)*(T8ETA(1)**2)*TBETA(2)+PAR(9)*TBETA(I)**3 
RETURN 

20 AUX=PAR(10)*TBETA(2)**3+PAR(11)*{T8ETA(2)**2)*T8ETA(1)+PAR(12)*TBE 
1TA(2)**2+PAR(13)*T8ETA(2)*TBETA(1)+PAR{14)*TBETA(2)+PAR(IS)*TBETA( 
2l)+PAR(16)*TBETA(1)**2+PAR(17)*(TBETAÎ1;**2)*TBETA(2)+PAR(18)*TBET 
3A(1)**3 
RETURN 
END 
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